Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Genome size evolution is known to be related with transposable elements, yet such relation in incipient species remains poorly understood. For decades, the subgroup of has been a model for evolutionary studies because of the different evolutionary stages and degrees of reproductive isolation its species present. Our main question here was how speciation influences genome size evolution and the fraction of repetitive elements, with a focus on transposable elements. We quantitatively compared the mobilome of four species and two subspecies belonging to this subgroup with their genome size, and performed comparative phylogenetic analyses. Our results showed that genome size and the fraction of repetitive elements evolved according to the evolutionary history of these species, but the content of transposable elements showed some discrepancies. Signals of recent transposition events were detected for different superfamilies. Their low genomic GC content suggests that in these species transposable element mobilization might be facilitated by relaxed natural selection. Additionally, a possible role of the superfamily DNA/ in the expansion of these genomes was also detected. We hypothesize that the undergoing process of speciation could be promoting the observed increase in the fraction of repetitive elements and, consequently, genome size.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/gen-2022-0073 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!