The quaternary compound CsPb(MoO) was synthesized and its structure was characterized using X-ray and neutron diffraction from 298 to 773 K, while thermal expansion was studied from 298 to 723 K. The crystal structure of the high-temperature phase β-CsPb(MoO) was elucidated, and it was found to crystallize in the space group 3̅ (No. 166), i.e., with a palmierite structure. In addition, the oxidation state of Mo in the low-temperature phase α-CsPb(MoO) was studied using X-ray absorption near-edge structure spectroscopy. Phase diagram equilibrium measurements in the CsMoO-PbMoO system were performed, revisiting a previously reported phase diagram. The equilibrium phase diagram proposed here includes a different composition of the intermediate compound in this system. The obtained data can serve as relevant information for thermodynamic modeling in view of the safety assessment of next-generation lead-cooled fast reactors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10170505PMC
http://dx.doi.org/10.1021/acs.inorgchem.3c00241DOI Listing

Publication Analysis

Top Keywords

phase diagram
12
csmoo-pbmoo system
8
diagram equilibrium
8
phase
5
structural studies
4
studies thermal
4
thermal analysis
4
analysis csmoo-pbmoo
4
system elucidation
4
elucidation β-cspbmoo
4

Similar Publications

Due to the sulfur's atoms' propensity to form molecules and/or polymeric chains of various sizes and configuration, elemental sulfur possesses more allotropes and polymorphs than any other element at ambient conditions. This variability of the starting building blocks is partially responsible for its rich and fascinating phase diagram, with pressure and temperature changing the states of sulfur from insulating molecular rings and chains to semiconducting low- and high-density amorphous configurations to incommensurate superconducting metallic atomic phase. Here, using a fast compression technique, we demonstrate that the rapid pressurisation of liquid sulfur can effectively break the molecular ring structure, forming a glassy polymeric state of pure-chain molecules (Am-S).

View Article and Find Full Text PDF

Extreme Synergy in the Random-Energy Model.

Phys Rev Lett

December 2024

Initiative for the Theoretical Sciences and CUNY-Princeton Center for the Physics of Biological Function, The Graduate Center, CUNY, New York, New York 10016, USA.

The random-energy model (REM), a solvable spin-glass model, has impacted an incredibly diverse set of problems, from protein folding to combinatorial optimization, to many-body localization. Here, we explore a new connection to secret sharing. We derive an analytic expression for the mutual information between any two disjoint thermodynamic subsystems of the REM.

View Article and Find Full Text PDF

Studying the properties and phase diagram of iron at high-pressure and high-temperature conditions has relevant implications for Earth's inner structure and dynamics and the temperature of the inner core boundary (ICB) at 330 GPa. Also, a hexagonal-closed packed to body-centered cubic (bcc) phase transition has been predicted by many theoretical works but observed only in a few experiments. The recent coupling of high-power laser with advanced x-ray sources from synchrotrons allows for novel approaches to address these issues.

View Article and Find Full Text PDF

Recently, robust d-wave superconductive (SC) order has been unveiled in the ground state of the 2D t-t^{'}-J model-with both nearest-neighbor (t) and next-nearest-neighbor (t^{'}) hoppings-by density matrix renormalization group studies. However, there is currently a debate on whether the d-wave SC holds up strong on both t^{'}/t>0 and t^{'}/t<0 cases for the t-t^{'}-J model, which correspond to the electron- and hole-doped sides of the cuprate phase diagram, respectively. Here, we exploit state-of-the-art thermal tensor network approach to accurately obtain the phase diagram of the t-t^{'}-J model on cylinders with widths up to W=6 and down to low temperature as T/J≃0.

View Article and Find Full Text PDF

Excitons, which are Coulomb bound electron-hole pairs, are composite bosons and thus at low temperature can form a superfluid state with a single well-defined amplitude and phase. We directly image this macroscopic exciton superfluid state in an hBN-separated MoSe-WSe heterostructure. At high density, we identify quasi-long-range order over the entire active area of our sample, through spatially resolved coherence measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!