A novel series of non-amidine-based C1s inhibitors have been explored. Starting from high-throughput screening hit , isoquinoline was replaced with 1-aminophthalazine to enhance C1s inhibitory activity while exhibiting good selectivity against other serine proteases. We first disclose a crystal structure of a complex of C1s and a small-molecule inhibitor (), which guided structure-based optimization around the S2 and S3 sites to further enhance C1s inhibitory activity by over 300-fold. Improvement of membrane permeability by incorporation of fluorine at the 8-position of 1-aminophthalazine led to identification of as a potent, selective, orally available, and brain-penetrable C1s inhibitor. significantly inhibited membrane attack complex formation induced by human serum in a dose-dependent manner in an in vitro assay system, proving that selective C1s inhibition blocked the classical complement pathway effectively. As a result, emerged as a valuable tool compound for both in vitro and in vivo assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184130PMC
http://dx.doi.org/10.1021/acs.jmedchem.3c00348DOI Listing

Publication Analysis

Top Keywords

novel series
8
potent selective
8
selective orally
8
orally brain-penetrable
8
brain-penetrable c1s
8
c1s inhibitors
8
complement pathway
8
enhance c1s
8
c1s inhibitory
8
inhibitory activity
8

Similar Publications

Discovery of Novel Small-Molecule Inhibitors Disrupting the MTDH-SND1 Protein-Protein Interaction.

J Med Chem

January 2025

State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.

MTDH-SND1 protein-protein interaction (PPI) plays an important role in the initiation and development of tumors, and it is a target for the treatment of breast cancer. In this study, we identified and synthesized a series of novel small-molecule inhibitors of MTDH-SND1 PPI. The representative compound showed potent activity against MTDH-SND1 PPI with an IC of 487 ± 99 nM and tight binding to the SND1-purified protein with a value of 279 ± 17 nM.

View Article and Find Full Text PDF

Detecting directional couplings from time series is crucial in understanding complex dynamical systems. Various approaches based on reconstructed state-spaces have been developed for this purpose, including a cross-distance vector measure, which we introduced in our recent work. Here, we devise two new cross-vector measures that utilize ranks and time series estimates instead of distances.

View Article and Find Full Text PDF

Treatment of 50 Acute and Chronic Wounds of Multiple Etiologies: A Case Series Looking at Outcomes and Utility of an Extended-Wear Transforming Powder Dressing.

Adv Skin Wound Care

January 2025

In the Department of Surgery, NYU Long Island School of Medicine, Mineola, New York, Sawyer Cimaroli, MD, is Surgical Resident; Danilo Lozada, MS, is Medical Student; and James Daniels, MD, is Surgical Resident. Brian Gillette, PhD, is Research Scientist, Department of Foundation of Medicine, NYU Long Island School of Medicine and Department of Surgery, NYU Langone Hospital Long Island. Scott Gorenstein, MD, is Clinical Assistant Professor, Department of Surgery, NYU Long Island School of Medicine.

Increasing healthcare costs, limited healthcare resources, an aging population, and lifestyle-related diseases make wound management a growing clinical, social, and economic burden. This case series investigated the use of a novel, biocompatible, polymer-based transforming powder dressing (TPD) that transforms in situ to a shape-retentive wound matrix upon hydration for treating wounds of various etiologies.In this institutional review board-approved single-center retrospective case series, the researchers evaluated various acute and chronic wounds treated with TPD over a period of 2 years.

View Article and Find Full Text PDF

Carbene-metal-amide (CMA) complexes have diverse applications in luminescence, imaging and sensing. In this study, we designed and synthesized a series of CMA complexes, which were subsequently doped into a PMMA host. These materials demonstrate light-induced dynamic phosphorescence, attributed to their long intrinsic triplet state lifetime (τP,int, in the μs-ms scale), high intersystem crossing (ISC) rate constant (kISC, up to 107 s-1), and bright phosphorescence.

View Article and Find Full Text PDF

Genetic investigation of hydrogenases in suggests that redox balance via hydrogen cycling enables high ethanol yield.

Appl Environ Microbiol

January 2025

Centro de Engenharia Genética e Biologia Molecular (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.

Unlabelled: is an anaerobic and thermophilic bacterium that has been genetically engineered for ethanol production at very high yields. However, the underlying reactions responsible for electron flow, redox equilibrium, and how they relate to ethanol production in this microbe are not fully elucidated. Therefore, we performed a series of genetic manipulations to investigate the contribution of hydrogenase genes to high ethanol yield, generating evidence for the importance of hydrogen-reacting enzymes in ethanol production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!