Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lipids play a crucial role in various biological functions, including membrane composition, energy storage, cell signalling, and metabolic and epigenetic processes. Abnormal lipid accumulation and metabolism during in vitro maturation (IVM) of oocytes have been linked to the use of fetal bovine serum (FBS), even though it provides several beneficial molecules, contributing to the oocyte competence. Delipidating agents have been used to mitigate these deleterious effects, but they can have adverse effects on embryonic development. In this study, we explored how lipids present in fetal bovine serum (FBS) can impact the composition of oocytes and their resulting blastocysts in vitro. For that, we used organic solvents to separate the polar and nonpolar (lipid enriched) phase of FBS. Oocytes were in vitro matured in the presence of 10% whole FBS (control), 10% FBS plus 10% nonpolar lipids (lipid enriched - OL) or 10% polar lipids only (partially delipidated - ODL). After 24 h, part of the matured oocytes was collected and those remaining in each group underwent in vitro fertilization (IVF) and culture (IVC) under the same conditions and expanded blastocysts were collected at day 7 (control, BL and BDL). Oocytes and embryos were analysed by Multiple Reaction Monitoring mass spectrometry (MRM-MS) to determine their lipid composition. Interestingly, principal component analysis (PCA) revealed a clear distinction in the lipid profile of oocytes and blastocysts from both treatments compared to the control group. Control oocytes and blastocysts had higher triacylglycerol and cholesterol ester enrichment while the OL, ODL, BL and BDL groups had higher amounts of free fatty acids (FFAs). The structural and signalling phospholipids also differed among groups. Our findings suggest that the lipid-enriched fraction of FBS can be manipulated for IVM to ensure proper maturation, resulting in oocytes and blastocysts with less accumulated intracellular lipids and an improved metabolic status.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/rda.14367 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!