Preclinical models of Alzheimer's disease (AD)-related cognitive decline can be useful for developing therapeutics. The current study longitudinally assessed short-term memory, using a delayed matching-to-position (DMTP) task, and attention, using a 3-choice serial reaction time (3CSRT) task, from approximately 18 weeks of age through death or 72 weeks of age in APPswe/PS1dE9 mice, a widely used mouse model of AD-related amyloidosis. Both transgenic (Tg) and non-Tg mice exhibited improvements in DMTP accuracy over time. Breaks in testing reduced DMTP accuracy but accuracy values quickly recovered in both Tg and non-Tg mice. Both Tg and non-Tg mice exhibited high accuracy in the 3CSRT task with breaks in testing briefly reducing accuracy values equivalently in the 2 genotypes. The current results raise the possibility that deficits in Tg APPswe/PS1dE9 mice involve impairments in learning rather than declines in established performances. A better understanding of the factors that determine whether deficits develop will be useful for designing evaluations of potential pharmacotherapeutics and may reveal interventions for clinical application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239324 | PMC |
http://dx.doi.org/10.1016/j.neurobiolaging.2023.03.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!