Qianjin Wenwu decoction suppresses renal interstitial fibrosis by enhancing the degradation of extracellular matrix in mice with unilateral ureteral obstruction.

Chin J Nat Med

Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; Yanbian Medical and Health Industry Pilot Base, College of Pharmacy, Yanbian University, Yanji 133002, China. Electronic address:

Published: April 2023

Diabetic kidney disease (DKD) is the most common complication of diabetes mellitus (DM). Qianjin Wenwu decoction (QWD), a well-known traditional Korean medicine, has been used for the treatment of DKD, with satisfactory therapeutic effects. This study was designed to investigate the active components and mechanisms of action of QWD in the treatment of DKD. The results demonstrated that a total of 13 active components in five types were found in QWD, including flavonoids, flavonoid glycosides, phenylpropionic acids, saponins, coumarins, and lignins. Two key proteins, TGF-β1 and TIMP-1, were identified as the target proteins through molecular docking. Furthermore, QWD significantly suppressed Scr and BUN levels which increased after unilateral ureteral obstruction (UUO). Hematoxylin & eosin (H&E) and Masson staining results demonstrated that QWD significantly alleviated renal interstitial fibrosis in UUO mice. We also found that QWD promoted ECM degradation by regulating MMP-9/TIMP-1 homeostasis to improve renal tubulointerstitial fibrosis and interfere with the expression and activity of TGF- β1 in DKD treatment. These findings explain the underlying mechanism of QWD for the treatment of DKD, and also provide methodological reference for investigating the mechanism of traditional medicine in the treatment of DKD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1875-5364(23)60434-0DOI Listing

Publication Analysis

Top Keywords

treatment dkd
16
qianjin wenwu
8
wenwu decoction
8
renal interstitial
8
interstitial fibrosis
8
unilateral ureteral
8
ureteral obstruction
8
medicine treatment
8
active components
8
qwd treatment
8

Similar Publications

The maintenance of a healthy epithelial-endothelial juxtaposition requires cross-talk within glomerular cellular niches. We sought to understand the spatially-anchored regulation and transition of endothelial and mesangial cells from health to injury in DKD. From 74 human kidney samples, an integrated multi-omics approach was leveraged to identify cellular niches, cell-cell communication, cell injury trajectories, and regulatory transcription factor (TF) networks in glomerular capillary endothelial (EC-GC) and mesangial cells.

View Article and Find Full Text PDF

Unraveling diabetic kidney disease: insights from single-cell RNA sequencing.

Int Urol Nephrol

January 2025

Department of Nephrology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.

The incidence of diabetic kidney disease (DKD) is rising annually. Diabetes leads to structural damage and dysfunction in the kidneys, clinically manifesting as progressive proteinuria and declining renal function, ultimately resulting in end-stage renal disease (ESRD). Recent findings have identified a subset of DKD known as normoalbuminuric diabetic kidney disease (NADKD), characterized by normal urine albumin levels but reduced renal function.

View Article and Find Full Text PDF

Background And Aims: Type 2 diabetes mellitus (T2DM) is usually complicated by cardiovascular diseases, hyperglycemia, and obesity, which worsen the outcome for the patient. Since recent evidence underlines the epigenetic role of glucagon-like peptide-1 receptor agonists (GLP-1RAs) in the management of these comorbidities, this study compared the effects of these agents, namely liraglutide, semaglutide, dulaglutide, and exenatide, on miRNA regulation in the management of T2DM.

Results: GLP-1RAs modify the expression of miRNAs involved in endothelial function, sugar metabolism, and adipogenesis, including but not limited to miR-27b, miR-130a, and miR-210.

View Article and Find Full Text PDF

Improving Renal Protection in Chronic Kidney Disease Associated with Type 2 Diabetes: The Role of Finerenone.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Internal Medicine, Division of Nephrology and Hypertension, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia.

Chronic kidney disease (CKD) is a major complication of type 2 diabetes mellitus (T2D), which often leads to diabetic kidney disease (DKD). Traditional therapies, including renin- angiotensin-aldosterone system inhibitors and sodium-glucose cotransporter-2 inhibitors, are effective in slowing CKD progression. However, these approaches are insufficient to comprehensively inhibit mineralocorticoid receptor (MR) overactivation in the kidneys, which remains a significant driver of inflammation, fibrosis, and oxidative stress.

View Article and Find Full Text PDF

Aims: To assess the renoprotective effects of dulaglutide and identify mechanisms of action in patients with type 2 diabetes and diabetic kidney disease (DKD).

Materials And Methods: Outpatients/ambulant patients at the Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University between October 2021 and July 2023, with type 2 diabetes and DKD, a urinary albumin-to-creatinine ratio (UACR) ≥ 3 mg/mmol and who were receiving hypoglycemic agents were prescribed dulaglutide at a dose rate of 0.75 - 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!