Porous graphdiynes are a new class of porous 2D materials with tunable electronic structures and various pore structures. They have potential applications as well-defined nanostructured electrodes and can provide platforms for understanding energy storage mechanisms underlying supercapacitors. Herein, the effect of stacking structure and metallicity on energy storage with such electrodes is investigated. Simulations reveal that supercapacitors based on porous graphdiynes of AB stacking structure can achieve both higher double-layer capacitance and ionic conductivity than AA stacking. This phenomenon is ascribed to more intense image forces in AB stacking, leading to a breakdown of ionic ordering and the formation of effective "free ions". Macroscale analysis shows that doped porous graphdiynes can deliver outstanding gravimetric and volumetric energy and power densities due to their enhanced quantum capacitance. These findings pave the way for designing high-performance supercapacitors by regulating pore topology and metallicity of electrode materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202301118DOI Listing

Publication Analysis

Top Keywords

porous graphdiynes
16
energy storage
12
pore topology
8
stacking structure
8
porous
5
energy
4
storage mechanism
4
supercapacitors
4
mechanism supercapacitors
4
supercapacitors porous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!