Soil contaminants threaten global food security by posing threats to food safety through food chain pollution. Fly ash is a potential agent of soil contamination that contains heavy metals and hazardous pollutants. However, being rich in macro- and micronutrients that have direct beneficial effects on plant growth, fly ash has been recommended as a low-cost soil ameliorant in agriculture in countries of the Global South. Arbuscular mycorrhizal fungi (AMF), ubiquitous in agricultural soils, enhance efficiency of plant nutrient uptake from soils but can equally increase uptake of toxic pollutants from fly ash ameliorated soils to edible crop tissues. We investigated AMF-mediated amplification of nutrient and heavy metal uptake from fly ash amended soils to shoots, roots and grains of barley. We used a microcosm-based experiment to analyse the impacts of fly ash amendments to soil in concentrations of 0 (control), 15, 30 or 50% respectively, on root colonization by AMF Rhizophagus irregularis and AMF-mediated transfer of N, P and heavy metals: Ni, Co, Pb and Cr to barley tissues. These concentrations of fly ash are equivalent to 0, 137, 275 and 458 t ha respectively, in soil. Root AMF colonization correlated negatively with fly ash concentration and was not detected at 50% fly ash amendment. Shoots, roots and grains of mycorrhizal barley grown with 15, 30 and 50% fly ash amendments had significantly higher concentrations of Ni, Co, Pb and Cr compared to the control and their respective non-mycorrhizal counterparts. Presence of heavy metals in barley plants grown with fly ash amended soil and their increased AMF-mediated translocation to edible grains may significantly enhance the volume of heavy metals entering the human food chain. We recommend careful assessment of manipulation of agricultural soils with fly ash as heavy metal accumulation in agricultural soils and human tissues may cause irreversible damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2023.121733 | DOI Listing |
Environ Pollut
January 2025
Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
To realize the comprehensive utilization of large amounts of high-ash coal slime and comprehensively understand the excellent performance of nutrient release and lead and cadmium adsorption of high-ash coal slime silicon composite materials, green and safe mild hydrothermal conditions (200 °C) were used to prepare the rich-rich coal slime. Zeolite/tobermorite composites (Z-TOBs) were used in this study. Batch adsorption tests and repeated extraction tests were used to determine whether silicon, potassium, and calcium nutrients of Z-TOBs have sustained release properties and are affected by pH.
View Article and Find Full Text PDFEnviron Pollut
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China. Electronic address:
Ammonia (NH) is crucial in fine particulate matter (PM) formation, but past estimations on industrial NH emissions remain highly uncertain. In this study, the flow of NH within air pollution control devices (APCDs) were investigated basing on material flow analysis with in-situ measurements of NH concentrations at the inlets and outlets of each APCD. Then, by combing emission factors updated with recent in-situ measurements and provincial-level activity data from statistical yearbooks and associated reports, NH emissions from various industrial sources, as well as their spatial distribution across China in 2020, were evaluated.
View Article and Find Full Text PDFWaste Manag
January 2025
Qilu University of Technology (Shandong Academy of Sciences), Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Jinan 250014, China. Electronic address:
Municipal solid waste incineration fly ash (MSWIFA) is considered a hazardous solid waste, traditionally disposed by solidified landfill methods. However, solidified landfills present challenges with leaching heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). To address this issue, this study examined two pretreatment methods for MSWIFA: sintering at 850℃ for 30 min and washing with three water baths (20 min each) at a 3:1 liquid-solid ratio.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China.
This article systematically investigated the improvement effect of polypropylene fiber (PPF) on the mechanical and freeze-thaw properties of alkali-activated fly ash slag concrete (AAFSC) with high fly ash content and cured at room temperature. Fly ash and slag were used as precursors, with fly ash accounting for 80% of the total mass. A mixed solution of sodium hydroxide and sodium silicate was used as alkali activator, and short-cut PPF was added to improve the performance of AAFSC.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Cangzhou Municipal Engineering Company Limited, Cangzhou 061000, China.
To improve the mechanical and durability properties of low liquid limit soil, an eco-friendly, all-solid, waste-based stabilizer (GSCFC) was proposed using five different industrial solid wastes: ground granulated blast-furnace slag (GGBS), steel slag (SS), coal fly ash (CFA), flue-gas desulfurization (FGD) gypsum, and carbide slag (CS). The mechanical and durability performance of GSCFC-stabilized soil were evaluated using unconfined compressive strength (UCS), California bearing ratio (CBR), and freeze-thaw and wet-dry cycles. The Rietveld method was employed to analyze the mineral phases in the GSCFC-stabilized soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!