Unveiling different antibiotic degradation mechanisms on dual reaction center catalysts with nitrogen vacancies via peroxymonosulfate activation.

Chemosphere

School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China. Electronic address:

Published: August 2023

Metal-nitrogen-site catalysts are widely recognized as effective heterogeneous catalysts in peroxymonosulfate (PMS)-based advanced oxidation processes. However, the selective oxidation mechanism for organic pollutants is still contradictory. In this work, manganese-nitrogen active centers and tunable nitrogen vacancies were synchronously constructed on graphitic carbon nitride (LMCN) through l-cysteine-assisted thermal polymerization to reveal different antibiotic degradation mechanisms. Benefiting from the synergism of manganese-nitrogen bond and nitrogen vacancies, the LMCN catalyst exhibited excellent catalytic activity for the degradation of tetracycline (TC) and sulfamethoxazole (SMX) antibiotics with first-order kinetic rate constants of 0.136 min and 0.047 min, which were higher than those of other catalysts. Electron transfer dominated TC degradation at low redox potentials, while electron transfer and high-valent manganese (Mn (V)) were responsible for SMX degradation at high redox potentials. Further experimental studies unveiled that the pivotal role of nitrogen vacancies is to promote electron transfer pathway and Mn(V) generation, while nitrogen-coordinated manganese as the primary catalytic active site determines Mn(V) generation. In addition, the antibiotic degradation pathways were proposed and the toxicity of byproducts was analyzed. This work provides an inspiring idea for the controlled generation of reactive oxygen species by targeted activation of PMS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.138788DOI Listing

Publication Analysis

Top Keywords

nitrogen vacancies
16
antibiotic degradation
12
electron transfer
12
degradation mechanisms
8
redox potentials
8
mnv generation
8
degradation
6
unveiling antibiotic
4
mechanisms dual
4
dual reaction
4

Similar Publications

Article Synopsis
  • Electric quadrupole traps effectively levitate charged objects, from protons to small particles, influencing their rotational behavior when charge distribution varies.
  • Experiments reveal a shift in motion for microparticles, transitioning from librational to synchronized rotation with the trap drive due to torque effects from the electric quadrupole.
  • This technique showcases versatility by spinning various particles like silicon microrods and microdiamonds, with the latter enabling detailed motion analysis through embedded nitrogen vacancy centers, promising advances in levitated quantum nanomechanics.
View Article and Find Full Text PDF

Investigating skyrmion stability and core polarity reversal in NdMnGe.

Sci Rep

January 2025

Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.

We present a study on nanoscale skyrmionic spin textures in [Formula: see text], a rare-earth complex noncollinear ferromagnet. We confirm, using X-ray microscopy, that [Formula: see text] can host lattices of metastable skyrmion bubbles at room temperature in the absence of a magnetic field, after applying a suitable field cooling protocol. The skyrmion bubbles are robust against temperature changes from room temperature to 330 K.

View Article and Find Full Text PDF

Titanium nitride sensor for selective NO detection.

Nat Commun

January 2025

School of Environmental Science and Technology, Dalian University of Technology, Dalian, China.

Efficient detection methods are needed to monitor nitrogen dioxide (NO), a major NO pollutant from fossil fuel combustion that poses significant threats to both ecology and human health. Current NO detection technologies face limitations in stability and selectivity. Here, we present a transition metal nitride sensor that exhibits exceptional selectivity for NO, demonstrating a sensitivity 30 times greater than that of the strongest interfering gas, NO.

View Article and Find Full Text PDF

We have conducted a systematic study employing density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) to explore the gas sensing capabilities of nitrogen-doped single vacancy graphene quantum dots (SV/3N) decorated with transition metals (TM = Mn, Co, Cu). We have studied the interactions between TM@SV/3N and four different target gases (AsH, NH, PH, and HS) through the computation of adsorption energies, charge transfer, noncovalent interaction, density of states, band gap, and work function for 12 distinct adsorption systems. Our comprehensive analysis included an in-depth assessment of sensors' stability, sensitivity, selectivity, and reusability for practical applications.

View Article and Find Full Text PDF

Nitrogen vacancy mediated g-CN/BiVO Z-scheme heterostructure nanostructures for exceptional photocatalytic performance.

Environ Res

December 2024

School of Materials and Chemistry, Analytical and Testing Center, Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science and Technology, Mianyang, 621010, China. Electronic address:

In this work, a novel V-g-CN/BiVO (V-CN/BVO) Z-scheme heterojunction photocatalyst was formed by introducing nitrogen vacancies (V) and constructing heterojunction, which is able to efficiently degrade the representative contaminant rhodamine B (RhB) upon exposure to visible-light, resulting in an outstanding degradation rate of 98.91% of RhB within 30 min. This photocatalyst exhibits catalytic universality and allows the degradation of methylene blue (MB, 97.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!