Biocatalytic characterization of Hericium erinaceus laccase isoenzymes for the oxidation of lignin derivative substrates.

Int J Biol Macromol

Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea. Electronic address:

Published: June 2023

Mushroom laccases are biocatalysts that oxidize various substrates. To identify a novel enzyme involved in lignin valorization, we isolated and characterized laccase isoenzymes from the mushroom Hericium erinaceus. The laccase cDNAs (Lac1a and Lac1b) cloned from the mushroom mycelia consisted of 1536 bp and each encoded a protein with 511 amino acids, containing a 21-amino-acid signal peptide. Comparative phylogenetic analysis revealed high homology between the deduced amino acid sequences of Lac1a and Lac1b and those from basidiomycetous fungi. In the Pichia pastoris expression system, high extracellular production of Lac1a, a glycoprotein, was achieved, whereas Lac1b was not expressed as a secreted protein because of hyper-glycosylation. Biochemical characterization of the purified recombinant Lac1a (rLac1a) protein revealed its oxidizing efficacy toward 14 aromatic substrates. The highly substrate-specific rLac1a showed catalytic efficiencies of 877 s mM, 829 s mM, 520 s mM, and 467 s mM toward 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), hydroquinone, guaiacol, and 2,6-dimethylphenol, respectively. Moreover, rLac1a showed approximately 10 % higher activity in non-ionic detergents and >50 % higher residual activity in various organic solvents. These results indicate that rLac1a is a novel oxidase biocatalyst for the bioconversion of lignin into value-added products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.124658DOI Listing

Publication Analysis

Top Keywords

hericium erinaceus
8
erinaceus laccase
8
laccase isoenzymes
8
lac1a lac1b
8
biocatalytic characterization
4
characterization hericium
4
isoenzymes oxidation
4
oxidation lignin
4
lignin derivative
4
derivative substrates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!