Mushroom laccases are biocatalysts that oxidize various substrates. To identify a novel enzyme involved in lignin valorization, we isolated and characterized laccase isoenzymes from the mushroom Hericium erinaceus. The laccase cDNAs (Lac1a and Lac1b) cloned from the mushroom mycelia consisted of 1536 bp and each encoded a protein with 511 amino acids, containing a 21-amino-acid signal peptide. Comparative phylogenetic analysis revealed high homology between the deduced amino acid sequences of Lac1a and Lac1b and those from basidiomycetous fungi. In the Pichia pastoris expression system, high extracellular production of Lac1a, a glycoprotein, was achieved, whereas Lac1b was not expressed as a secreted protein because of hyper-glycosylation. Biochemical characterization of the purified recombinant Lac1a (rLac1a) protein revealed its oxidizing efficacy toward 14 aromatic substrates. The highly substrate-specific rLac1a showed catalytic efficiencies of 877 s mM, 829 s mM, 520 s mM, and 467 s mM toward 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), hydroquinone, guaiacol, and 2,6-dimethylphenol, respectively. Moreover, rLac1a showed approximately 10 % higher activity in non-ionic detergents and >50 % higher residual activity in various organic solvents. These results indicate that rLac1a is a novel oxidase biocatalyst for the bioconversion of lignin into value-added products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.124658 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!