Blast lung injuries (BLIs) are frequent because of industrial accidents and terrorist groups. Bone marrow mesenchymal stem cells (BMSCs) and exosomes derived from BMSCs (BMSCs-Exo) have become a hot topic in modern biology because of their significance in damage healing, immune regulation, and gene therapy. The aim of this study is to investigate the effect of BMSCs and BMSCs-Exo on BLI in rats caused by gas explosion. Here, BMSCs and BMSCs-Exo were transplanted into BLI rats via tail vein and then evaluated pathological alterations, oxidative stress, apoptosis, autophagy, and pyroptosis in the lung tissue. Through histopathology and changes in malondialdehyde (MDA) and superoxide dismutase (SOD) contents, we discovered that oxidative stress and inflammatory infiltration in the lungs were significantly reduced by BMSCs and BMSCs-Exo. After treatment with BMSCs and BMSCs-Exo, apoptosis-related proteins, such as cleaved caspase-3 and Bax, were significantly decreased, and the ratio of Bcl-2/Bax was significantly increased; the level of pyroptosis-associated proteins, including NLRP3, GSDMD-N, cleaved caspase-1, IL-1β, and IL-18, were decreased; autophagy-related proteins, beclin-1 and LC3, were downregulated while P62 was upregulated; the number of autophagosomes was decreased. In summary, BMSCs and BMSCs-Exo attenuate BLI caused by gas explosion, which may be associated with apoptosis, aberrant autophagy, and pyroptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SHK.0000000000002128 | DOI Listing |
Kaohsiung J Med Sci
December 2024
Department of Emergency Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China.
Curcumin and bone marrow stem cells (BMSCs)-derived exosomes are considered to be useful for the treatment of many human diseases, including sepsis-associated acute kidney injury (SA-AKI). However, the role and underlying molecular mechanism of curcumin-loaded BMSCs-derived exosomes in the progression of SA-AKI remain unclear. Exosomes (BMSCs-EXO or BMSCs-EXO) were isolated from curcumin or DMSO-treated BMSCs, and then co-cultured with LPS-induced HK2 cells.
View Article and Find Full Text PDFHum Cell
December 2024
Department of Oncology, Donghu District, First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330000, Jiangxi, China.
Immune thrombocytopenia (ITP) is a common hematological disorder. Our previous study has found that exosomal miR-146a-5p derived from bone marrow mesenchymal stromal cells (BMSCs) regulate Th17/Treg balance to alleviate ITP. This work further investigated the role of miR-146a-5p in ITP with pregnancy.
View Article and Find Full Text PDFImmunol Invest
December 2024
Department of Anesthesia, Kunming Children's Hospital, Kunming, Yunnan, China.
Objective: Sepsis is a syndrome of the systemic inflammatory response caused by infection that can endanger a patient's life. The aim of this study was to explore the molecular mechanism by which bone marrow mesenchymal stem cells-derived exosomes (BMSCs-exo) carrying miR-20a-5p regulate the progression of sepsis.
Methods: Clinical samples from sepsis patients were collected.
In Vitro Cell Dev Biol Anim
November 2024
The Affiliated Hospital of Zunyi Medical University, Huichuan District, Guizhou Province, 149 Dalian Road, Zunyi City, 563000, China.
Bone marrow mesenchymal stem cells (BMSCs) have been verified to be essential factors regulating osteogenic functions, which is mainly attributed to their secretion of extracellular vesicles. Exosomes derived from BMSCs (BMSCs-Exo) contribute to osteoblast functions that are critical for improving bone defect. Our current study aims to investigate the molecular mechanism dominated by BMSCs-Exo that affects osteoblast differentiation and osteogenesis.
View Article and Find Full Text PDFReprod Sci
October 2024
Department of Clinical Laboratory, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310008, Zhejiang, China.
The efficacy of Bone Marrow Mesenchymal Stem Cell-derived Exosomes (BMSCs-Exo) in addressing the complexities of Polycystic Ovary Syndrome (PCOS) has been explored in a controlled experimental study using a DHEA-induced PCOS model in 6-8-week-old female NMRI mice. This research undertook an in vivo approach with fifteen female murine subjects to investigate the potential of BMSCs-Exo in promoting vascular regeneration and alleviating the adverse effects associated with PCOS. Through a strategic intervention, the study aimed to modulate the pathophysiological markers of oxidative stress and inflammation that are hallmark features of PCOS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!