Two sensitive microbiological and charge transfer spectrophotometric methods have been developed for the quantitative determination of the antifungal drug, tioconazole, in its pure form and pharmaceutical preparations. The microbiological assay was based on the agar disk diffusion method by measuring the diameter of the inhibition zones related to different concentrations of tioconazole. The spectrophotometric method relied on charge transfer complex formation between tioconazole as an n-donor and chloranilic acid as a π-acceptor at room temperature. The formed complex was measured at λ = 530 nm. The molar absorptivity and the formation constant of the formed complex were determined using different models, including the Benesi-Hildebrand, Foster-Hammick-Wardley, Scott, Pushkin-Varshney-Kamoonpuri, and Scatchard equations. Different thermodynamic parameters associated with the complex formation, including the free energy change (ΔG°), the standard enthalpy (ΔH°), and the standard entropy change (ΔS°), were evaluated. The two methods were validated in conformity with ICH-recommended guidelines and employed successfully for the quantification of tioconazole in both pure form and pharmaceutical formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2023.122770 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!