A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Co-hydrothermal carbonization of pine residual sawdust and non-dewatered sewage sludge - effect of reaction conditions on hydrochar characteristics. | LitMetric

Waste valorization is mandatory to develop and consolidate a circular bioeconomy. It is necessary to search for appropriate processes to add value to different wastes by utilizing them as feedstocks to provide energy, chemicals, and materials. For instance, hydrothermal carbonization (HTC) is an alternative thermochemical process that has been suggested for waste valorization aiming at hydrochar production. Thus, this study proposed the Co-HTC of pine residual sawdust (PRS) with non-dewatered sewage sludge (SS) - two wastes largely produced in sawmills and wastewater treatment plants, respectively - without adding extra water. The influence of temperature (180, 215, and 250 °C), reaction time (1, 2, and 3 h), and PRS/SS mass ratio (1/30, 1/20, and 1/10) on the yield and characteristics of the hydrochar were evaluated. The hydrochars obtained at 250 °C had the best coalification degree, showing the highest fuel ratio, high heating value (HHV), surface area, and N, P, and K retention, although presenting the lowest yields. Conversely, hydrochar functional groups were generally reduced by increasing Co-HTC temperatures. Regarding the Co-HTC effluent, it presented acidic pH (3.66-4.39) and high COD values (6.2-17.3 g·L). In general, this new approach could be a promising alternative to conventional HTC, in which a high amount of extra water is required. Besides, the Co-HTC process can be an option for managing lignocellulosic wastes and sewage sludges while producing hydrochar. This carbonaceous material has the potential for several applications, and its production is a step towards a circular bioeconomy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.117994DOI Listing

Publication Analysis

Top Keywords

pine residual
8
residual sawdust
8
non-dewatered sewage
8
sewage sludge
8
waste valorization
8
circular bioeconomy
8
extra water
8
hydrochar
5
co-hydrothermal carbonization
4
carbonization pine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!