This study was designed to evaluate the safety, immunogenicity, and efficacy of a single dose of L. infantum (LiCen) live attenuated candidate vaccine against canine leishmaniasis (CanL). Eighteen healthy domestic dogs with no anti-Leishmania antibodies and negative leishmanin skin test (LST) were randomly inoculated intravenously with either L. infantum (LiCen) vaccine candidate in 10 dogs or phosphate-buffered saline (PBS) in 8 dogs. The safety, immunogenicity, and efficacy rate of L. infantum (LiCen) vaccine candidate against CanL were evaluated by different criteria, including clinical manifestations, injection-site lesion, hematology and biochemistry values, anti-Leishmania antibodies using direct agglutination test (DAT), delayed-type hypersensitivity (DTH) using LST, and CD4 and CD8 T-cells subsets, as well as by measuring interferon (IFN-γ), interleukin (IL-23), IL-17, and IL-10 cytokines. Spleen aspiration and detection of Leishmania parasite using parasitological examinations (microscopy and culture) were performed in both vaccinated and control groups. Two months after intervention, each dog was challenged intraperitoneally (IP) with wide type (WT) L. infantum. Two-month follow-up post vaccination showed no clinical signs and serious side effects associated with the vaccination. A significant increase was found in the expression of IL-17, CD4, and CD8 gene transcripts in PBMCs, as well as increased levels of Th1 cytokines, and reduction of Th2 cytokine. The efficacy of the vaccine candidate was calculated to be 42.85%. While the time window for assessing the vaccine's effectiveness was too limited to draw any real conclusions but the preliminary results showed a moderate efficacy rate due to inoculation a single dose of L. infantum (LiCen) vaccine candidate. Further investigations with more sample sizes and multiple doses of the vaccine candidate using natural challenges in the endemic areas of CanL are recommended.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cimid.2023.101984DOI Listing

Publication Analysis

Top Keywords

vaccine candidate
24
infantum licen
16
safety immunogenicity
12
immunogenicity efficacy
12
licen vaccine
12
live attenuated
8
canine leishmaniasis
8
single dose
8
dose infantum
8
anti-leishmania antibodies
8

Similar Publications

Advancements in nanoparticle-based vaccine development against Japanese encephalitis virus: a systematic review.

Front Immunol

December 2024

State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.

Vaccination remains the sole effective strategy for combating Japanese encephalitis (JE). Both inactivated and live attenuated vaccines exhibit robust immunogenicity. However, the production of these conventional vaccine modalities necessitates extensive cultivation of the pathogen, incurring substantial costs and presenting significant biosafety risks.

View Article and Find Full Text PDF

An effectively protective VLP vaccine candidate for both genotypes of feline calicivirus.

Front Immunol

December 2024

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Feline calicivirus (FCV) is one of the most widespread pathogens affecting feline animals. Currently, FCV is believed to be divisible into two genotypes, with prevalent strains encompassing both GI and GII. Vaccination is the primary means of preventing FCV infection, yet traditional inactivated or attenuated vaccines theoretically pose potential safety concerns.

View Article and Find Full Text PDF

Background: Nipah virus is a pathogenic virus of ruinous zoonotic potential with inflated rate of mortality in humans.

Methods: Considering the emerging threat of this pandemic virus, the present investigation amid to design vaccine by using the bioinformatics tools such as host and virus codon usage analysis, CD8+ peptide prediction, immunogenicity/allergenicity/toxicity, MHC-I allele binding prediction and subsequent population coverage and MHC-I-peptide docking analysis.

Results: In this study (conducted in 2022 at School of Biotechnology, Katra, India), a set of 11 peptides of the structural proteins of Nipah Virus were predicted and recognized by the set of MHC-I alleles that are expressed in 92% of the global human population.

View Article and Find Full Text PDF

H and B Blood Antigens Are Essential for In Vitro Replication of GII.2 Human Norovirus.

Open Forum Infect Dis

January 2025

Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan.

Background: Human norovirus (HuNoV) is a major cause of enteric infectious gastroenteritis and is classified into several genotypes based on its capsid protein amino acid sequence and nucleotide sequence of the polymerase gene. Among these, GII.4 is the major genotype worldwide.

View Article and Find Full Text PDF

Porcine deltacoronavirus (PDCoV) is increasingly prevalent in newborn piglets with diarrhea. With the development of research on the virus and the feasibility of PDCoV cross-species transmission, the biosafety and the development of pig industry have been greatly affected. In this study, a PDCoV strain CH/LNFX/2022 was isolated from diarrheal newborn piglets at a farm in China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!