Background: MSH1 (MutS homolog1) is a nuclear-encoded protein that plays a crucial role in maintaining low mutation rates and stability of the organellar genome. While plastid MSH1 maintains nuclear epigenome plasticity and affects plant development patterns, mitochondrial MSH1 suppresses illegitimate recombination within the mitochondrial genome, affects mitochondrial genome substoichiometric shifting activity and induces cytoplasmic male sterility (CMS) in crops. However, a detailed functional investigation of onion MSH1 has yet to be achieved.
Materials And Results: The homology analysis of onion genome database identified a single copy of the AcMSH1 gene in the onion cv. Bhima Super. In silico analysis of AcMSH1 protein sequence revealed the presence of 6 conserved functional domains including a unique MSH1-specific GIY-YIG endonuclease domain at the C-terminal end. At N-terminal end, it has signal peptide sequences targeting chloroplast and mitochondria. The concentration of AcMSH1 was found to be highest in isolated mitochondria, followed by chloroplasts, and negligible in the cytoplasmic fraction; which proved its localization to the mitochondria and chloroplasts. Quantitative expression analysis revealed that AcMSH1 protein levels were highest in leaves, followed by flower buds, root tips, flowers, and umbels, with the lowest amount found in callus tissue.
Conclusion: Onion genome has single copy of MSH1, with characteristic GIY-YIG endonuclease domain. AcMSH1 targeted towards both chloroplasts and mitochondria. The identification and characterisation of AcMSH1 may provide valuable insights into the development of CMS lines in onion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-023-08414-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!