In the present era, nanomaterials are emerging as a powerful tool for management of plant disease and improving crop production to meet the growing global need for food. Thus, this paper was conducted to explore the effectiveness of five different types of nanoparticles (NPs) viz., CoONPs, CuONPs, FeONPs, NiONPs, and ZnONPs as treatments for Fusarium wilt as well as their role in promoting growth of the common bean plant. The five types of NPs were applied as a treatment for wilt in two ways, therapeutic and protective plans under greenhouse conditions. In vivo experiments showed that all types of NPs significantly increased disease control and diminished the symptoms of Fusarium wilt for both incidence and severity. The recorded values for disease control using the respective NPs during the protective plan were 82.77, 60.17, 49.67, 38.23, and 70.59%. Meanwhile these values were 92.84, 64.67, 51.33, 45.61, 73.84% during the therapeutic plan. Moreover, CuONPs during the protective plan were the best among the five types of NPs employed in terms of wilt disease management. Regarding the use of these NPs as growth promoters, the obtained results confirmed the effectiveness of the five types of NPs in enhancing vegetative growth of the plant under greenhouse conditions, in comparison with control. Among the five NPs, CuONPs improved the plant vegetative growth and particularly increased the content of the photosynthetic pigments; chlorophyll-a (2.96 mg/g), -b (1.93 mg/g), and total carotenoids (1.16 mg/g). These findings suggest the successful and potential exploitation of nanomaterials in agriculture deployed as nano-based products including nano-fungicides and nano-fertilizers. In terms of sustainability, this promising and exceptional multifunctional role of these nanomaterials will surely exert positive impacts on both the environment and sustainable agriculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148937PMC
http://dx.doi.org/10.1186/s13568-023-01546-7DOI Listing

Publication Analysis

Top Keywords

types nps
16
wilt disease
8
promoting growth
8
growth common
8
common bean
8
effectiveness types
8
nps
8
fusarium wilt
8
greenhouse conditions
8
disease control
8

Similar Publications

The evaluation of chlorhexidine-carrier nanosystems based on iron oxide magnetic nanoparticles (IOMNPs), has gained significant attention in recent years due to the unique properties of the magnetic nanoparticles (NPSs). Chlorhexidine (CHX), a well-established antimicrobial agent, has been widely used in medical applications, including oral hygiene and surgical antisepsis. This study aims to report an in vitro and in ovo toxicological screening of the synthesized CHX-NPS nanosystem, of the carrier matrix (maghemite NPSs) and of the drug to be delivered (CHX solution), by employing two types of cell lines-HaCaT immortalized human keratinocytes and JB6 Cl 41-5a murine epidermal cells.

View Article and Find Full Text PDF

(1) Background: The widespread use of nanoparticles (NPs) implies their inevitable contact with living organisms, including aquatic microorganisms, making it essential to understand the effects and consequences of this interaction. Understanding the adaptive responses and biochemical changes in microalgae and cyanobacteria under NP-induced stress is essential for developing biotechnological strategies that optimize biomolecule production while minimizing potential toxicity. This study aimed to evaluate the interactions between various potentially toxic nanoparticles and the cyanobacterial strain , focusing on the biological adaptations and biochemical mechanisms that enable the organism to withstand xenobiotic exposure.

View Article and Find Full Text PDF

Prussian blue nanoparticles (PBNPs) have been identified as a promising candidate for biomimetic peroxidase (POD)-like activity, specifically due to the metal centres (Fe/Fe) of Prussian blue (PB), which have the potential to function as catalytically active centres. The decoration of PBNPs with desired functional polymers (such as amino- or carboxylate-based) primarily facilitates the subsequent linkage of biomolecules to the nanoparticles for their use in biosensor applications. Thus, the elucidation of the catalytic POD mimicry of these systems is of significant scientific interest but has not been investigated in depth yet.

View Article and Find Full Text PDF

Highly sensitive and selective detection of SARS-CoV-2 spike protein S1 using optically-active nanocomposite-coated melt-blown masks.

Anal Chim Acta

January 2025

Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India. Electronic address:

Detection of viruses, including coronavirus (SARS-CoV-2), via facile, fast, and optical methods is highly important to control pandemics. In this regard, optically-active nanomaterials and nanoparticles (NPs) are a wise choice due to their long-term stability, ease of functionalization, and modifications. In this work, a nanocomposite based on NiFe layered double hydroxide (LDH) and ZIF-67 metal-organic framework (MOF) was designed and synthesized, and decorated on the surface of the melt-blown mask.

View Article and Find Full Text PDF

The prevalence of nanoplastics (NPs) and sulfonamide antibiotics (SAs) in the aquatic environment is potentially harmful to the environment, and these pollutants are often present in the environment in the form of composite ones, thereby introducing more complex effects and hazards to the environment. Therefore, it is crucial to investigate the toxic effects of the individual target pollutants and their mixtures. In this study, we used Scenedesmus obliquus as the test organisms, two types of NPs: polystyrene (PS) and amine-modified (NH-PS), four SAs: sulfapyridine (SPY), sulfamethazine (SMR), sulfamethoxypyridazine (SMP), and sulfamethoxazole (SMZ), and their eight binary mixtures were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!