Ensembles code for associative learning in the primate lateral prefrontal cortex.

Cell Rep

The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada. Electronic address:

Published: May 2023

The lateral prefrontal cortex (LPFC) of primates is thought to play a role in associative learning. However, it remains unclear how LPFC neuronal ensembles dynamically encode and store memories for arbitrary stimulus-response associations. We recorded the activity of neurons in LPFC of two macaques during an associative learning task using multielectrode arrays. During task trials, the color of a symbolic cue indicated the location of one of two possible targets for a saccade. During a trial block, multiple randomly chosen associations were learned by the subjects. A state-space analysis indicated that LPFC neuronal ensembles rapidly learn new stimulus-response associations mirroring the animals' learning. Multiple associations acquired during training are stored in a neuronal subspace and can be retrieved hours after learning. Finally, knowledge of old associations facilitates learning new, similar associations. These results indicate that neuronal ensembles in the primate LPFC provide a flexible and dynamic substrate for associative learning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2023.112449DOI Listing

Publication Analysis

Top Keywords

associative learning
16
neuronal ensembles
12
lateral prefrontal
8
prefrontal cortex
8
lpfc neuronal
8
stimulus-response associations
8
learning
7
associations
6
lpfc
5
ensembles
4

Similar Publications

Chronic stress typically leads to deficits in fear extinction. However, when a delay occurs from the end of chronic stress and the start of fear conditioning (a "recovery"), rats show improved context-cue discrimination, compared to recently stressed rats or nonstressed rats. The infralimbic cortex (IL) is important for fear extinction and undergoes neuronal remodeling after chronic stress ends, which could drive improved context-cue discrimination.

View Article and Find Full Text PDF

Extinction induced representational change.

J Exp Psychol Anim Learn Cogn

January 2025

Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Procesos Basicos y Su Desarrollo.

Extinction may alter the representation of a cue (e.g., it becomes less salient).

View Article and Find Full Text PDF

Hippocampal circuits in the brain enable two distinct cognitive functions: the construction of spatial maps for navigation, and the storage of sequential episodic memories. Although there have been advances in modelling spatial representations in the hippocampus, we lack good models of its role in episodic memory. Here we present a neocortical-entorhinal-hippocampal network model that implements a high-capacity general associative memory, spatial memory and episodic memory.

View Article and Find Full Text PDF

Making informed clinical decisions based on individualised outcome predictions is the cornerstone of precision psychiatry. Prediction models currently employed in psychiatry rely on algorithms that map a statistical relationship between clinical features (predictors/risk factors) and subsequent clinical outcomes. They rely on associations that overlook the underlying causal structures within the data, including the presence of latent variables, and the evolution of predictors and outcomes over time.

View Article and Find Full Text PDF

Dynamic reconfiguration of default and frontoparietal network supports creative incubation.

Neuroimage

January 2025

Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100048, China. Electronic address:

Although creative ideas often emerge during distraction activities unrelated to the creative task, empirical research has yet to reveal the underlying neurocognitive mechanism. Using an incubation paradigm, we temporarily disengaged participants from the initial creative ideation task and required them to conduct two different distraction activities (moderately-demanding: 1-back working memory task, non-demanding: 0-back choice reaction time task), then returned them to the previous creative task. On the process of creative ideation, we calculated the representational dissimilarities between the two creative ideation phases before and after incubation period to estimate the neural representational change underlying successful incubation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!