Skeletal and cardiac muscle have different protein turnover responses in a model of right heart failure.

Geroscience

Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.

Published: August 2023

Right heart failure (RHF) is a common and deadly disease in aged populations. Extra-cardiac outcomes of RHF such as skeletal muscle atrophy contribute to morbidity and mortality. Despite the significance of maintaining right ventricular (RV) and muscle function, the mechanisms of RHF and muscle atrophy are unclear. Metformin (MET) improves cardiac and muscle function through the regulation of metabolism and the cellular stress response. However, whether MET is a viable therapeutic for RHF and muscle atrophy is not yet known. We used deuterium oxide labeling to measure individual protein turnover in the RV as well as subcellular skeletal muscle proteostasis in aged male mice subjected to 4 weeks of hypobaric hypoxia (HH)-induced RHF. Mice exposed to HH had elevated RV mass and impaired RV systolic function, neither of which was prevented by MET. HH resulted in a higher content of glycolytic, cardiac, and antioxidant proteins in the RV, most of which were inhibited by MET. The synthesis of these key RV proteins was generally unchanged by MET, suggesting MET accelerated protein breakdown. HH resulted in a loss of skeletal muscle mass due to inhibited protein synthesis alongside myofibrillar protein breakdown. MET did not impact HH-induced muscle protein turnover and did not prevent muscle wasting. Together, we show tissue-dependent responses to HH-induced RHF where the RV undergoes hypertrophic remodeling with higher expression of metabolic and stress response proteins. Skeletal muscle undergoes loss of protein mass and atrophy, primarily due to myofibrillar protein breakdown. MET did not prevent HH-induced RV dysfunction or muscle wasting, suggesting that the identification of other therapies to attenuate RHF and concomitant muscle atrophy is warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651599PMC
http://dx.doi.org/10.1007/s11357-023-00777-7DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
16
muscle atrophy
16
muscle
13
protein turnover
12
protein breakdown
12
cardiac muscle
8
protein
8
muscle protein
8
heart failure
8
muscle function
8

Similar Publications

Eccentric contraction- (ECC) induced force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in ECC force loss, a unifying mechanism that orchestrates force loss across such diverse molecular targets has not been identified. We showed that correcting defective hydrogen sulfide (H2S) signaling in mdx muscle prevented ECC force loss.

View Article and Find Full Text PDF

Background: Obesity and metabolic syndrome (MS) accelerate arterial stiffening, increasing cardiovascular (CV) risk after transplant. BMI is limited by inability to differentiate muscle, fat mass, and fat distribution patterns. The aim of this study was to identify the best anthropometric measure to detect arterial stiffness as assessed by pulse wave velocity (PWV) in a racially diverse pediatric transplant population.

View Article and Find Full Text PDF

CD9/SOX2-positive cells in the intermediate lobe of the rat pituitary gland exhibit mesenchymal stem cell characteristics.

Cell Tissue Res

January 2025

Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan.

Adult tissue stem cells of the anterior pituitary gland, CD9/SOX2-positive cells, are believed to exist in the marginal cell layer (MCL) bordering the residual lumen of the Rathke's pouch. These cells migrate from the intermediate lobe side of the MCL (IL-MCL) to the anterior lobe side of the MCL and may be involved in supplying hormone-producing cells. Previous studies reported that some SOX2-positive cells of the anterior lobe differentiate into skeletal muscle cells.

View Article and Find Full Text PDF

Anti-SRP myositis: a diagnostic and therapeutic challenge.

Turk J Pediatr

December 2024

Division of Pediatric Rheumatology, Department of Pediatrics, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Türkiye.

Background: Anti-signal recognition protein (anti-SRP) myopathy is a rare idiopathic inflammatory myopathy in children. Herein, a 3-year-old patient with severe anti-SRP myopathy showing a rapidly progressive disease course is presented in order to increase the awareness of pediatricians about idiopathic inflammatory myopathies.

Case Presentation: A previously healthy 3-year-old girl presented with progressive symmetrical proximal muscle weakness that caused difficulty in climbing stairs for two months prior to evaluation, and a marked elevation of the serum creatine kinase levels.

View Article and Find Full Text PDF

Myotonic Dystrophy type 2 (DM2) is a multisystem disease affecting many tissues, including skeletal muscle, heart, and brain. DM2 is caused by unstable expansion of CCTG repeats in an intron 1 of a gene coding for cellular nuclear binding protein (CNBP). The expanded CCTG repeats cause DM2 pathology due to the accumulation of RNA CCUG repeats, which affect RNA processing in patients' cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!