Using the tenets of data feminism, we analyse the National Agricultural Statistics Service Quick Stats database - the primary repository of United States agricultural data. We identify unstated assumptions built into the database's scaffolding through data collection, aggregation and dissemination practices, revealing how they facilitate granular analyses of agricultural topics historically judged as national priorities while leaving unilluminated many others of vital importance for contemporary sustainability needs. We argue that this entrenches an inequitable and unsustainable food systems status quo, and we offer recommendations for data providers and users based on principles of reflexivity, context and pluralism.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s43016-023-00711-2DOI Listing

Publication Analysis

Top Keywords

agricultural data
8
food systems
8
data
5
implications agricultural
4
data practices
4
practices sustainable
4
sustainable food
4
systems tenets
4
tenets data
4
data feminism
4

Similar Publications

The widespread use of pesticides, including diazinon, poses an increased risk of environmental pollution and detrimental effects on biodiversity, food security, and water resources. In this study, we investigated the impact of Potentially Toxic Elements (PTE) including Zn, Cd, V, and Mn on the degradation of diazinon in three different soils. We investigated the capability and performance of four machine learning models to predict residual pesticide concentration, including adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), radial basis function (RBF), and multi-layer perceptron (MLP).

View Article and Find Full Text PDF

Root nodule symbiosis is traditionally recognized in the Fabales, Fagales, Cucurbitales, and Rosales orders within the Rosid I clade of angiosperms. However, ambiguous root nodule formation has been reported in Zygophyllaceae and Roystonea regia (Arecaceae), although a detailed analysis has yet to be conducted. We aimed to perform morphological analyses of root structures in these plants and utilize metagenomic techniques to identify and characterize the bacterial populations within the nodule-like structures.

View Article and Find Full Text PDF

Chromatin Topological Domains Associate With the Rapid Formation of Tandem Duplicates in Plants.

Adv Sci (Weinh)

December 2024

School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.

In eukaryotes, chromatin is compacted within nuclei under the principle of compartmentalization. On top of that, condensin II establishes eukaryotic chromosome territories, while cohesin organizes the vertebrate genome by extruding chromatin loops and forming topologically associating domains (TADs). Thus far, the formation and roles of these chromatin structures in plants remain poorly understood.

View Article and Find Full Text PDF

Dermal Exposure to Agrochemicals as Risk Factor for Skin Cancer in Farmers and Ranchers in the US Central States.

Am J Ind Med

December 2024

Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA.

Background: Farm operators are at a high risk of developing skin cancer due to their occupational sun exposure. With the growing incidence of skin cancer, it is also important to evaluate other occupational risk factors. Farm operators confront numerous physical, chemical, and biological hazards in their work environment.

View Article and Find Full Text PDF

Understanding the triacylglycerol-based carbon anabolic differentiation in Cyperus esculentus and Cyperus rotundus developing tubers via transcriptomic and metabolomic approaches.

BMC Plant Biol

December 2024

College of Agronomy and Biotechnology, Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.

Background: Yellow nutsedge (Cyperus esculentus, known as 'YouShaDou' in China, YSD) and purple nutsedge (Cyperus rotundus, known as 'XiangFuZi' in China, XFZ), closely related Cyperaceae species, exhibit significant differences in triacylglycerol (TAG) accumulation within their tubers, a key factor in carbon flux repartitioning that highly impact the total lipid, carbohydrate and protein metabolisms. Previous studies have attempted to elucidate the carbon anabolic discrepancies between these two species, however, a lack of comprehensive genome-wide annotation has hindered a detailed understanding of the underlying molecular mechanisms.

Results: This study utilizes transcriptomic analyses, supported by a comprehensive YSD reference genome, and metabolomic profiling to uncover the mechanisms underlying the major carbon perturbations between the developing tubers of YSD and XFZ germplasms harvested in Yunnan province, China, where the plant biodiveristy is renowned worldwide and may contain more genetic variations relative to their counterparts in other places.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!