More accurate specification of water supply shows its importance for global crop production.

Nat Food

Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.

Published: September 2022

Warming temperatures tend to damage crop yields, yet the influence of water supply on global yields and its relation to temperature stress remains unclear. Here we use satellite-based measurements to provide empirical estimates of how root zone soil moisture and surface air temperature jointly influence the global productivity of maize, soybeans, millet and sorghum. Relative to empirical models using precipitation as a proxy for water supply, we find that models using soil moisture explain 30-120% more of the interannual yield variation across crops. Models using soil moisture also better separate water-supply stress from correlated heat stress and show that soil moisture and temperature contribute roughly equally to historical variations in yield. Globally, our models project yield damages of -9% to -32% across crops by end-of-century under Shared Socioeconomic Pathway 5-8.5 from changes in temperature and soil moisture. By contrast, projections using temperature and precipitation overestimate damages by 28% to 320% across crops both because they confound stresses from dryness and heat and because changes in soil moisture and temperature diverge from their historical association due to climate change. Our results demonstrate the importance of accurately representing water supply for predicting changes in global agricultural productivity and for designing effective adaptation strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s43016-022-00592-xDOI Listing

Publication Analysis

Top Keywords

soil moisture
24
water supply
16
supply global
8
models soil
8
moisture temperature
8
temperature
6
soil
6
moisture
6
accurate specification
4
water
4

Similar Publications

Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.

Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).

View Article and Find Full Text PDF

Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.

View Article and Find Full Text PDF

With the advancement of ecological and environmental protection construction, the research on the modification of expansive soil using environmentally friendly polymers can make up for the harm to the ecological environment caused by traditional modification. Mechanical and microscopic properties of modified expansive soils were analyzed through indoor tests. The results showed that the liquid limit and plasticity index decreased by 52.

View Article and Find Full Text PDF

Microtopography-induced hydrological heterogeneity promotes the co-assembly of vascular plant and biocrust communities, providing synergistic protective functions for the Great Wall.

Sci Total Environ

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China. Electronic address:

The Great Wall in China, constructed from rammed earth, faces threats from natural erosion. Vascular plants and biocrusts have enhanced the stability of the Great Wall through various mechanisms; however, understanding of the colonization processes of vascular plants and biocrusts on the wall, as well as their protective mechanisms, remains limited. This study investigated the vascular plant communities, biocrusts, soil moisture content, soil properties, aggregate mechanical stability, aggregate water stability, and soil erodibility factors across seven fine-scale microtopographies of the Great Wall (lower, middle, and upper zones on the east and west faces, as well as the wall crest).

View Article and Find Full Text PDF

Dual controls of vapour pressure deficit and soil moisture on photosynthesis in a restored temperate bog.

Sci Total Environ

January 2025

Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise Street. 46, 51003 Tartu, Estonia. Electronic address:

Despite only covering ~3 % of the land mass, peatlands store more carbon (C) per unit area than any other ecosystem. This is due to the discrepancy between C fixed by the plants (Gross primary productivity (GPP)) and decomposition. However, this C is vulnerable to frequent, severe droughts and changes in the peatland microclimate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!