A multiomic atlas for the exploration of healthy aging in human monocytes.

Nat Aging

Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.

Published: January 2021

Download full-text PDF

Source
http://dx.doi.org/10.1038/s43587-020-00007-1DOI Listing

Publication Analysis

Top Keywords

multiomic atlas
4
atlas exploration
4
exploration healthy
4
healthy aging
4
aging human
4
human monocytes
4
multiomic
1
exploration
1
healthy
1
aging
1

Similar Publications

PLASMA: Partial LeAst Squares for Multiomics Analysis.

Cancers (Basel)

January 2025

Department of Biostatistics, Data Science, and Epidemiology, School of Public Health, Georgia Cancer Center at Augusta University, Augusta, GA 30912, USA.

: Recent growth in the number and applications of high-throughput "omics" technologies has created a need for better methods to integrate multiomics data. Much progress has been made in developing unsupervised methods, but supervised methods have lagged behind. : Here we present the first algorithm, PLASMA, that can learn to predict time-to-event outcomes from multiomics data sets, even when some samples have only been assayed on a subset of the omics data sets.

View Article and Find Full Text PDF

Multiomic machine learning on lactylation for molecular typing and prognosis of lung adenocarcinoma.

Sci Rep

January 2025

Department of Respiratory Diseases, Qilu Hospital of Shandong University, No. 107, Culture West Road, Jinan, Shandong, China.

To integrate machine learning and multiomic data on lactylation-related genes (LRGs) for molecular typing and prognosis prediction in lung adenocarcinoma (LUAD). LRG mRNA and long non-coding RNA transcriptomes, epigenetic methylation data, and somatic mutation data from The Cancer Genome Atlas LUAD cohort were analyzed to identify lactylation cancer subtypes (CSs) using 10 multiomics ensemble clustering techniques. The findings were then validated using the GSE31210 and GSE13213 LUAD cohorts.

View Article and Find Full Text PDF

Single-cell genomic technologies enable the multimodal profiling of millions of cells across temporal and spatial dimensions. However, experimental limitations hinder the comprehensive measurement of cells under native temporal dynamics and in their native spatial tissue niche. Optimal transport has emerged as a powerful tool to address these constraints and has facilitated the recovery of the original cellular context.

View Article and Find Full Text PDF

Total proctocolectomy with ileal pouch anal anastomosis is the standard of care for patients with severe ulcerative colitis. We generated a cell-type-resolved transcriptional and epigenetic atlas of ileal pouches using scRNA-seq and scATAC-seq data from paired biopsy samples of the ileal pouch and the ileal segment above the pouch (pre-pouch) from patients (male=4, female=2), and paired biopsies of the terminal ileum and ascending colon from healthy individuals (male=3, female=3) serving as reference. Our study finds an additional population of absorptive and secretory epithelial cells within the pouch but not the pre-pouch.

View Article and Find Full Text PDF

Droplet-based high-throughput 3D genome structure mapping of single cells with simultaneous transcriptomics.

Cell Discov

January 2025

Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.

Single-cell three-dimensional (3D) genome techniques have advanced our understanding of cell-type-specific chromatin structures in complex tissues, yet current methodologies are limited in cell throughput. Here we introduce a high-throughput single-cell Hi-C (dscHi-C) approach and its transcriptome co-assay (dscHi-C-multiome) using droplet microfluidics. Using dscHi-C, we investigate chromatin structural changes during mouse brain aging by profiling 32,777 single cells across three developmental stages (3 months, 12 months, and 23 months), yielding a median of 78,220 unique contacts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!