The principles, design and applications of fused-ring electron acceptors.

Nat Rev Chem

Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, China.

Published: September 2022

Fused-ring electron acceptors (FREAs) have a donor-acceptor-donor structure comprising an electron-donating fused-ring core, electron-accepting end groups, π-bridges and side chains. FREAs possess beneficial features, such as feasibility to tailor their structures, high property tunability, strong visible and near-infrared light absorption and excellent n-type semiconducting characteristics. FREAs have initiated a revolution to the field of organic solar cells in recent years. FREA-based organic solar cells have achieved unprecedented efficiencies, over 20%, which breaks the theoretical efficiency limit of traditional fullerene acceptors (~13%), and boast potential operational lifetimes approaching 10 years. Based on the original studies of FREAs, a variety of new structures, mechanisms and applications have flourished. In this Review, we introduce the fundamental principles of FREAs, including their structures and inherent electronic and physical properties. Next, we discuss the way in which the properties of FREAs can be modulated through variations to the electronic structure or molecular packing. We then present the current applications and consider the future areas that may benefit from developments in FREAs. Finally, we conclude with the position of FREA chemistry, reflecting on the challenges and opportunities that may arise in the future of this burgeoning field.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41570-022-00409-2DOI Listing

Publication Analysis

Top Keywords

fused-ring electron
8
electron acceptors
8
organic solar
8
solar cells
8
freas
7
principles design
4
design applications
4
applications fused-ring
4
acceptors fused-ring
4
acceptors freas
4

Similar Publications

The introduction of 4,5-dihydroazuleno[2,1,8-ija]azulene as a central core between two 1,4-dithiafulvene (DTF) units provides a novel class of extended tetrathiafulvalene (TTF) electron donors. Herein we present the synthesis of such compounds with the azulenoazulene further expanded by annulation to benzene, naphthalene, or thiophene rings. Moreover, unsymmetrical donor-acceptor chromophores with one DTF and one carbonyl at the central core are presented.

View Article and Find Full Text PDF

Benzothiadiazole (BT) has shown promising applications in fullerene solar cells. However, few BT-based polymer donors exhibited a noticeable power conversion efficiency (PCE) for the fused-ring small molecular acceptor-based polymer solar cells (PSCs). Herein, we developed a D-A (D: donor, A: acceptor) polymer donor F-1 based on fluorinated BT (ffBT) as A unit and chlorinated benzo [1,2-b:4,5-b'] dithiophene (BDT-2Cl) as D unit.

View Article and Find Full Text PDF

Small molecules with an acceptor-donor-acceptor (A-D-A) structure, featuring a fused-ring core as the donor and two electron-withdrawing end groups as acceptor units, represent a potential option for NIR-II fluorophores, benefiting from their narrow bandgaps, superior light-harvesting capabilities, and exceptional photostabilities. However, their planar conformations predispose them to forming H-aggregates during self-assembly, leading to significantly reduced fluorescence quantum yield (QY) of the resulting nanofluorophores. Herein, we report a small molecule, PF8CN, with a terminal unit-A-D-A-terminal unit structure.

View Article and Find Full Text PDF

Nanographenes and polycyclic aromatic hydrocarbons, both finite forms of graphene, are promising organic semiconducting materials because their optoelectronic and magnetic properties can be modulated through precise control of their molecular peripheries. Several atomically precise edge structures have been prepared by bottom-up synthesis; however, no systematic elucidation of these edge topologies at the molecular level has been reported. Herein, we describe rationally designed modular syntheses of isomeric dibenzoixenes with diverse molecular peripheries, including cove, zigzag, bay, fjord, and gulf structured.

View Article and Find Full Text PDF

Quinoidal Semiconductor Nanoparticles for NIR-II Photoacoustic Imaging and Photoimmunotherapy of Cancer.

Adv Mater

December 2024

Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China.

Photoagents with ultra-high near-infrared II (NIR-II) light energy conversion efficiency hold great promise in tumor phototherapy due to their ability to penetrate deeper tissues and minimize damage to surrounding healthy cells. However, the development of NIR-II photoagents remain challenging. In this study, an all-fused-ring quinoidal acceptor-donor-acceptor (A-D-A) molecule, SKCN, with a BTP core is synthesized, and nanoparticles named FA-SNPs are prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!