Hybrid bilayer membrane (HBM) platforms represent an emerging nanoscale bio-inspired interface that has broad implications in energy catalysis and smart molecular devices. An HBM contains multiple modular components that include an underlying inorganic surface with a biological layer appended on top. The inorganic interface serves as a support with robust mechanical properties that can also be decorated with functional moieties, sensing units and catalytic active sites. The biological layer contains lipids and membrane-bound entities that facilitate or alter the activity and selectivity of the embedded functional motifs. With their structural complexity and functional flexibility, HBMs have been demonstrated to enhance catalytic turnover frequency and regulate product selectivity of the O and CO reduction reactions, which have applications in fuel cells and electrolysers. HBMs can also steer the mechanistic pathways of proton-coupled electron transfer (PCET) reactions of quinones and metal complexes by tuning electron and proton delivery rates. Beyond energy catalysis, HBMs have been equipped with enzyme mimics and membrane-bound redox agents to recapitulate natural energy transport chains. With channels and carriers incorporated, HBM sensors can quantify transmembrane events. This Review serves to summarize the major accomplishments achieved using HBMs in the past decade.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41570-022-00433-2DOI Listing

Publication Analysis

Top Keywords

hybrid bilayer
8
energy catalysis
8
biological layer
8
bilayer membranes
4
membranes platforms
4
platforms biomimicry
4
biomimicry catalysis
4
catalysis hybrid
4
bilayer membrane
4
membrane hbm
4

Similar Publications

Two-dimensional (2D) β-TeO has gained attention as a promising material for optoelectronic and power device applications, thanks to its transparency and high hole mobility. However, the mechanisms driving its -type conductivity and dopability remain elusive. In this study, we investigate the intrinsic and extrinsic point defects in monolayer and bilayer β-TeO, the latter of which has been experimentally synthesized, using the Heyd-Scuseria-Ernzerhof (HSE) + D3 hybrid functional.

View Article and Find Full Text PDF

Harnessing genetically engineered cell membrane-derived vesicles as biotherapeutics.

Extracell Vesicles Circ Nucl Acids

January 2024

Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China.

Cell membrane-derived vesicles (CMVs) are particles generated from living cells, including extracellular vesicles (EVs) and artificial extracellular vesicles (aEVs) prepared from cell membranes. CMVs possess considerable potential in drug delivery, regenerative medicine, immunomodulation, disease diagnosis, . owing to their stable lipid bilayer structure, favorable biocompatibility, and low toxicity.

View Article and Find Full Text PDF

Itraconazole (ITZ) is a highly effective antifungal agent. However, its oral application is associated with systemic toxicity and poor topical use. The present study aims to improve the antifungal activity of ITZ by loading it into bioadhesive niosomes.

View Article and Find Full Text PDF

Layer-number-dependent photoswitchability in 2D MoS-diarylethene hybrids.

Nanoscale

December 2024

School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.

Molybdenum disulfide (MoS) is a notable two-dimensional (2D) transition metal dichalcogenide (TMD) with properties ideal for nanoelectronic and optoelectronic applications. With growing interest in the material, it is critical to understand its layer-number-dependent properties and develop strategies for controlling them. Here, we demonstrate a photo-modulation of MoS flakes and elucidate layer-number-dependent charge transfer behaviors.

View Article and Find Full Text PDF

Application of subcutaneous extracellular matrix to prepare bilayer heparin-coated polycaprolactone/decellularized small-diameter vascular graft for tissue regeneration.

Int J Biol Macromol

December 2024

Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053,China. Electronic address:

In clinical practice, the demand for functional small-diameter vascular grafts continues to increase. In this study, a decellularized aorta artery was inserted into a poly(caprolactone) (PCL) vascular scaffold for self-assembly in-vitro to create a hybrid scaffold. The hybrid scaffold was then implanted subcutaneously into the dorsal flanks and the subcutaneous extracellular matrix was applied for bilayer adhesion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!