Global nutrient equity for people and the planet.

Nat Food

The Australian National University, Canberra, Australian Capital Territory, Australia.

Published: November 2021

The industrial world has converted inert soil and atmospheric nutrients into reactive fertilizer flows that endanger water quality, biodiversity and climate. Simultaneously, poor nations starve because of the shortage of these nutrients in agricultural soils. Here we propose a redistribution of accumulated nutrients to enhance food security while counteracting the current degradation of critical Earth system processes. Residue and sediment nutrients could be processed and transported to food-insecure regions through the opposite logistics used to ship rock phosphate across the globe. Financing through trading accumulated rights could trigger the required innovations in processing, logistics and thinking. Such a socially just 'one Earth currency' could leverage a transformation towards resilience, equity and dignity across the critical Earth system processes.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s43016-021-00391-wDOI Listing

Publication Analysis

Top Keywords

critical earth
8
earth system
8
system processes
8
global nutrient
4
nutrient equity
4
equity people
4
people planet
4
planet industrial
4
industrial converted
4
converted inert
4

Similar Publications

Local Climate Might Amplify Economic and Environmental Impacts of Electric Vehicles in China.

Environ Sci Technol

January 2025

Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China.

Electric vehicles (EVs) are crucial for addressing the intertwined challenges of climate change and air pollution. The multiaspect benefits of EVs are highly dependent on local climate conditions, yet the impacts of regional heterogeneity in the context of future climate change remain unclear. Here, we develop a systemic modeling framework integrating fleet modeling, emission projection, index decomposition analysis, and detailed cost assessment to identify local drivers and potential trade-offs behind electrification.

View Article and Find Full Text PDF

Radiative cooling is an excellent strategy for mitigating global warming, by enhancing heat fluxes away from the Earth, thus balancing the Earth's heat flow. However, for randomly particle-dispersed radiative cooling materials, the particle content as high as 94-96 wt % or 60 vol %, far exceeds the critical pigment percentage (40-50%) of traditional coatings, preventing its large-scale application. Here, inspired by particle deposition under gravity in solution, we demonstrate an auto-deposited SiO composite radiative cooling coating (ADRC) which reduces the amounts of particles required and lowers costs.

View Article and Find Full Text PDF

Using machine learning to predict selenium content in crops: Implications for soil health and agricultural land utilization in longevity regions.

Sci Total Environ

January 2025

Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing 100037, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China.

Selenium (Se) is an indispensable trace element to human health, yet its biological tolerance threshold is relatively narrow. The potential application of machine learning methods to indirectly predict the Se content in crops across regional areas, thereby validating the reasonableness of soil health thresholds, remains to be explored. This study analyzed the factors influencing Se absorption in crops from longevity regions and employed machine learning models to predict the bioconcentration factor of Se, thereby obtaining selenium content in these crops and ultimately estimated the Se threshold for healthy soils.

View Article and Find Full Text PDF

Grasslands cover approximately a third of the Earth's land surface and account for about a third of terrestrial carbon storage. Yet, we lack strong predictive models of grassland plant biomass, the primary source of carbon in grasslands. This lack of predictive ability may arise from the assumption of linear relationships between plant biomass and the environment and an underestimation of interactions of environmental variables.

View Article and Find Full Text PDF

The Hirmand Transboundary River Basin (HTRB), shared by Afghanistan, Iran, and Pakistan, is a hydrologically critical and politically sensitive region. This basin sustains livelihoods, ecosystems, and agriculture in a region plagued by climatic variability and geopolitical tensions. The Hirmand River, which forms the heart of this basin, faces severe morphological and discharge changes due to upstream water management, climatic shifts, and land use changes, directly impacting downstream ecosystems and human populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!