Ensuring the traceability of Pu-erh tea products is crucial in the production and sale of tea, as it is a key means to ensure their quality and safety. The common approach used in traceability systems is the utilization of bound Quick Response (QR) codes or Near Field Communication (NFC) chips to track every link in the supply chain. However, counterfeiting risks still persist, as QR codes or NFC chips can be copied and inexpensive products can be fitted into the original packaging. To address this issue, this paper proposes a tea face verification model called TeaFaceNet for traceability verification. The aim of this model is to improve the traceability of Pu-erh tea products by quickly identifying counterfeit products and enhancing the credibility of Pu-erh tea. The proposed method utilizes an improved MobileNetV3 combined with Triplet Loss to verify the similarity between two input tea face images with different texture features. The recognition accuracy of the raw tea face dataset, ripe tea face dataset and mixed tea face dataset of the TeaFaceNet network were 97.58%, 98.08% and 98.20%, respectively. Accurate verification of tea face was achieved using the optimal threshold. In conclusion, the proposed TeaFaceNet model presents a promising approach to enhance the traceability of Pu-erh tea products and combat counterfeit products. The robustness and generalization ability of the model, as evidenced by the experimental results, highlight its potential for improving the accuracy of Pu-erh tea face recognition and enhancing the credibility of Pu-erh tea in the market. Further research in this area is warranted to advance the traceability of Pu-erh tea products and ensure their quality and safety.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147721PMC
http://dx.doi.org/10.1038/s41598-023-34190-zDOI Listing

Publication Analysis

Top Keywords

pu-erh tea
32
tea face
32
traceability pu-erh
16
tea products
16
tea
15
face dataset
12
pu-erh
8
face
8
improved mobilenetv3
8
triplet loss
8

Similar Publications

Post-fermented Pu-erh tea (PFPT) is a microbial fermented tea characterized by unique sensory attributes and multiple health benefits. is the dominant fungus involved in the fermentation process and plays a significant role in imparting the distinct characteristics of PFPT. To investigate the role of in the fermentation of Pu-erh tea, this study inoculated unsterilized sun-dried green tea with isolated from Pu-erh tea to enhance the fermentation process.

View Article and Find Full Text PDF

Most reported sensor arrays for teas were based on the sensing of phenolic hydroxyl group on tea polyphenols. In this work, a novel sensor array was developed based on the simultaneous sensing of phenols and ketones, for the enhanced discrimination of tea polyphenols with/without ketone, and then for the efficient discrimination of raw Pu-erh teas from different origins and the counterfeit, combined with machine learning. This sensor array is consisting of four channels.

View Article and Find Full Text PDF

Theabrownin (TB), the primary pigment in Pu-erh tea, has shown potential in alleviating metabolic syndrome (MS), though its precise mechanisms remain unclear. This study investigated the effects of Pu-erh tea water extract (WE) and TB on high-fat diet (HFD)-induced MS in rats, focusing on miRNA regulation and gut microbiota composition. Both WE and TB significantly improved markers of MS, including dyslipidemia, insulin resistance, and inflammation.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the aroma of Pu-erh tea by analyzing volatile compounds from five regions in Yunnan using advanced techniques like gas chromatography-mass spectrometry (GC-MS) and headspace solid phase microextraction (HS-SPME).
  • - A total of 69 aroma-active compounds were identified, with alcohols, ketones, and aldehydes being the most common, and significant differences in terpenoid enantiomers were noted.
  • - Important compounds were highlighted through statistical analysis, and a KEGG pathway analysis pointed to key metabolic pathways related to aroma compounds, indicating their roles in the tea's flavor profile.
View Article and Find Full Text PDF

Lactobacillus johnsonii GLJ001 prevents DSS-induced colitis in mice by inhibiting M1 macrophage polarization via gut microbiota-SCFAs axis.

Int Immunopharmacol

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China. Electronic address:

Inflammatory Bowel Disease (IBD) is increasing worldwide and has become a global emergent disease. Probiotics have been reported to be effective in relieving colitis. Previous studies found ripened Pu-erh tea (RPT) promoted gut microbiota resilience against dextran sulfate sodium (DSS)-induced colitis in mice by increasing relative abundance of Lactobacillus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!