Influenza virus (IV) causes several outbreaks of the flu each year resulting in an economic burden to the healthcare system in the billions of dollars. Several influenza pandemics have occurred during the last century and estimated to have caused 100 million deaths. There are four genera of IV, A (IVA), B (IVB), C (IVC), and D (IVD), with IVA being the most virulent to the human population. Hemagglutinin (HA) is an IVA surface protein that allows the virus to attach to host cell receptors and enter the cell. Here we have characterised the high-resolution structures of seven IVA HAs, with one in complex with the anti-influenza head-binding antibody C05. Our analysis revealed conserved receptor binding residues in all structures, as seen in previously characterised IV HAs. Amino acid conservation is more prevalent on the stalk than the receptor binding domain (RBD; also called the head domain), allowing the virus to escape from antibodies targeting the RBD. The equivalent site of C05 antibody binding to A/Denver/57 HA appears hypervariable in the other H1N1 IV HAs. Modifications within this region appear to disrupt binding of the C05 antibody, as these HAs no longer bind the C05 antibody by analytical SEC. Our study brings new insights into the structural and functional recognition of IV HA proteins and can contribute to further development of anti-influenza vaccines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140725 | PMC |
http://dx.doi.org/10.1038/s41598-023-33529-w | DOI Listing |
J Agric Food Chem
May 2024
College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China.
Allergenicity of soybean 7S protein (7S) troubles many people around the world. However, many processing methods for lowering allergenicity is invalid. Interaction of 7S with phenolic acids, such as chlorogenic acid (CHA), to structurally modify 7S may lower the allergenicity.
View Article and Find Full Text PDFJ Biomol Struct Dyn
September 2024
Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran.
Antiviral drugs are currently used to prevent or treat viral infections like influenza A Virus (IAV). Nonetheless, annual genetic mutations of influenza viruses make them resistant to efficient treatment by current medications. Antiviral peptides have recently attracted researchers' attention and can potentially supplant the current medications.
View Article and Find Full Text PDFSci Rep
April 2023
School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
Nat Commun
February 2022
Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA.
HIV Envelope (Env) is the main vaccine target for induction of neutralizing antibodies. Stabilizing Env into native-like trimer (NLT) conformations is required for recombinant protein immunogens to induce autologous neutralizing antibodies(nAbs) against difficult to neutralize HIV strains (tier-2) in rabbits and non-human primates. Immunizations of mice with NLTs have generally failed to induce tier-2 nAbs.
View Article and Find Full Text PDFSci Rep
January 2021
Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
The ferret is a key animal model for investigating the pathogenicity and transmissibility of important human viruses, and for the pre-clinical assessment of vaccines. However, relatively little is known about the ferret immune system, due in part to a paucity of ferret-reactive reagents. In particular, T follicular helper (Tfh) cells are critical in the generation of effective humoral responses in humans, mice and other animal models but to date it has not been possible to identify Tfh in ferrets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!