Lithium metal anodes suffer from enormous mechanical stress derived from volume changes during electrochemical plating and stripping. The utilization of derived stress has the potential for the dendrite-free deposition and electrochemical reversibility of lithium metal. Here, we investigated the plating and stripping process of lithium metal held within a cellular three-dimensional graphene skeleton decorated with homogeneous Ag nanoparticles. Owing to appropriate reduction-splitting and electrostatic interaction of nitrogen dopants, the cellular skeletons show micron-level pores and superior elastic property. As lithium hosts, the cellular skeletons can physically confine the metal deposition and provide continuous volume-derived stress between Li and collectors, thus meliorating the stress-regulated Li morphology and improving the reversibility of Li metal anodes. Consequently, the symmetrical batteries exhibit a stable cycling performance with a span life of more than 1900 h. Full batteries (NCM811 as cathodes) achieve a reversible capacity of 181 mA h g at 0.5 C and a stable cycling performance of 300 cycles with a capacity retention of 83.5%. The meliorative behavior of lithium metal within the cellular skeletons suggests the advantage of a stress-regulating strategy, which could also be meaningful for other conversion electrodes with volume fluctuation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c03327DOI Listing

Publication Analysis

Top Keywords

lithium metal
20
plating stripping
12
metal anodes
12
cellular skeletons
12
stable cycling
8
cycling performance
8
metal
7
lithium
6
stable plating
4
stripping lithium
4

Similar Publications

Magnetic relaxation switch biosensor for detection of Vibrio parahaemolyticus based on photocleavable hydrogel.

Anal Chim Acta

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China. Electronic address:

Background: Foodborne pathogens, particularly Vibrio parahaemolyticus (VP) found in seafood, pose significant health risks, including abdominal pain, nausea, and even death. Rapid, accurate, and sensitive detection of these pathogens is crucial for food safety and public health. However, existing detection methods often require complex sample pretreatment, which limits their practical application.

View Article and Find Full Text PDF

Lithium complexing strategy based on host-guest recognition for efficient Mg/Li separation.

Water Res

January 2025

College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institution Pollution Control & Ecology Security, Shanghai 200092, China. Electronic address:

Ion selective membranes with precise Mg/Li separation have attracted extensive interest in lithium extraction to circumvent the lithium supply shortage. However, realizing this target remains a significant challenge mainly due to a high concentration ratio of Mg/Li as well as the relatively close ionic hydration radius and chemical. Herein, inspired by the host-guest recognition between alkali-metal ions and crown ether (CE), a novel approach was proposed to regulate the membrane internal structure by introducing CE to strengthen the complexation between Li and CE.

View Article and Find Full Text PDF

High-entropy NASICON-Type LiAlTiZrSnTa(PO) with high electrochemical stability for lithium-ion batteries.

J Colloid Interface Sci

December 2024

Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan; High Entropy Materials Center, Hsinchu 300044, Taiwan. Electronic address:

LiAlTi (PO) (LATP) is a promising NASICON-type solid electrolyte for all-solid-state lithium-ion batteries (ASSLIBs) owing to its high ionic conductivity, low cost, and stability in ambient atmosphere. However, the electrochemical stability of LATP suffers upon contact with lithium metals, resulting in a reduction of Ti to Ti in its structure. This limitation necessitates interface modification processes, hindering its use in lithium-ion batteries.

View Article and Find Full Text PDF

Phthalocyanine nickel enhanced composite solid-state electrolytes with homogenous and fast Li-ion conduction for high-voltage Li-metal batteries.

J Colloid Interface Sci

December 2024

Key Laboratory of New Energy Development and Energy Storage Technology of Handan, College of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China.

Herein, a novel composite solid-state polymer electrolytes (CSEs) was regulated by introducing CoNi-MOF (Metal-organic framework) @NiPc (Nickel phthalocyanine) nanofiller (CMN) into PEO (polyethylene oxide) matrix. In this novel system, the NiPc uniformly wrapped around the surface of MOF through hydrogen bond bridging, avoiding the agglomeration of the MOF particles. The chemisorption between Ni in NiPc and the O atoms in the bis(triffuoromethanesulfonyl)imide anion (TFSI) restricted the mobility of the anions within the CSEs, which improved the release of Li ions from the NiPcLi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!