Gut microbiota contribute to Methamphetamine-induced cardiotoxicity in mouse model.

Chem Biol Interact

Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China. Electronic address:

Published: July 2023

Methamphetamine (METH) is a psychotropic drug known to cause cardiotoxicity. The gut-heart axis is emerging as an important pathway linking gut microbiota to cardiovascular disease, but the precise association between METH-induced cardiotoxicity and gut microbiota has yet to be elucidated. In this study, we established an escalating dose-multiple METH administration model in male BALB/c mice, examined cardiac injury and gut microbiota, and investigated the contribution of gut microbiota to cardiotoxicity induced by METH. Additionally, we treated mice with antibiotics and fecal microbiota transplantation (FMT) to assess the impact of gut microbiota on cardiotoxicity. Our results showed that METH exposure altered the p53 and PI3K/Akt signaling pathways and modulated the apoptosis pathway in heart tissue, accompanied by elevated levels of Bax/BCL-2 expression and cleaved caspase-3 proteins. METH exposure increased the diversity and richness of gut microbiota, and significantly changed the microbial community composition, accompanied by elevated abundance of Lactobacillus, Bifidobacterium, and decreased abundance of Bacteroides, norank_f_Muribaculaceae and Alistipes. Eliminating gut microbiota by antibiotics treatment alleviated METH-induced cardiotoxicity, while FMT treatment transferred similar cardiac injury manifestations from METH-exposed mice to healthy recipient mice. Our study unveils the crucial involvement of gut microbiota in the development of cardiotoxicity induced by METH and provides potential strategies for treating cardiac complications caused by METH.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2023.110512DOI Listing

Publication Analysis

Top Keywords

gut microbiota
36
gut
9
microbiota
9
meth-induced cardiotoxicity
8
cardiac injury
8
microbiota cardiotoxicity
8
cardiotoxicity induced
8
induced meth
8
meth exposure
8
accompanied elevated
8

Similar Publications

Background: Gut microbiota modulation of the brain function may present an opportunity to devise preventive or treatment strategies to manage impairments such as cognitive frailty (CF). This study aims to uncover the relationship between CF, gut microbiota, intestinal permeability and proteome.

Method: A total of 137 fecal samples of the elderly were collected, and subjected to DNA analysis, and enzyme-linked immunosorbent assays (ELISA).

View Article and Find Full Text PDF

Background: Research heavily suggests that brain-derived neurotrophic factor (BDNF), vital for neuronal growth and plasticity, and cholecystokinin (CCK), a satiety hormone that regulates BDNF levels, are altered in Alzheimer's Disease pathophysiology. Factors such as dysbiosis of gut microbiota and poor food habits may affect CCK and BDNF release and brain function. The objective is to evaluate the effects of dietary habits, gut microbiota, and exercise on BDNF and CCK release in Alzheimer's Disease patients.

View Article and Find Full Text PDF

Gut-derived lactic acid enhances tryptophan to 5-hydroxytryptamine in regulation of anxiety via .

Gut Microbes

December 2025

MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

The gut microbiota plays a pivotal role in anxiety regulation through pathways involving neurotransmitter production, immune signaling, and metabolic interactions. Among these, gut-derived serotonin (5-hydroxytryptamine, 5-HT), synthesized from tryptophan metabolism, has been identified as a key mediator. However, it remains unclear whether specific microbial factors regulate tryptophan metabolism to influence 5-HT production and anxiety regulation.

View Article and Find Full Text PDF

Background: Spousal care partners to people with dementia (PWD) have a higher rate of depression and anxiety when compared to similar age controls. Previous studies have suggested a role of gut microbiota in the pathophysiology of neuropsychiatric symptoms and Alzheimer's disease (AD). Thus, our study aims to: (1) determine the presence and severity of depression and anxiety in care partners of PWD, and (2) determine the concentrations of short chain fatty acids (SCFA), which are mainly produced by gut microbiota and are important in mediating gut microbiota effects, in the blood of care partners of PWD.

View Article and Find Full Text PDF

Background: Gut microbiota-derived metabolite Trimethylamine-N-oxide (TMAO) is increasingly recognized as a potential novel prognostic biomarker for cardiovascular disease. Our research work aimed to investigate the potential utility of TMAO measurement in patients with STelevation Myocardial Infarction (STEMI).

Methods: We performed a systematic literature search in PubMed from inception to the 1st of February 2024 to identify all studies examining the association between plasma TMAO levels and disease complexity or clinical outcomes in STEMI patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!