Lignin, a versatile and abundant biomass-derived polymer, possesses a wide array of properties that makes it a promising material for biotechnological applications. Lignin holds immense potential in the biotechnology and pharmaceutical field due to its biocompatibility, high carbon content, low toxicity, ability to be converted into composites, thermal stability, antioxidant, UV-protectant, and antibiotic activity. Notably, lignin is an environmental friendly alternative to synthetic plastic and fossil-based materials because of its inherent biodegradability, safety, and sustainability potential. The most important findings related to the use of lignin and lignin-based materials are reported in this review, providing an overview of the methods and techniques used for their manufacturing and modification. Additionally, it emphasizes on recent research and the current state of applications of lignin-based materials in the biomedical and pharmaceutical fields and also highlights the challenges and opportunities that need to be overcome to fully realize the potential of lignin biopolymer. An in-depth discussion of recent developments in lignin-based material applications, including drug delivery, tissue engineering, wound dressing, pharmaceutical excipients, biosensors, medical devices, and several other biotechnological applications, is provided in this review article.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.124601 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
Understanding the integration of transgene DNA (T-DNA) in transgenic crops, animals, and clinical applications is paramount for ensuring the stability and expression of inserted genes, which directly influence desired traits and therapeutic outcomes. Analyzing T-DNA integration patterns is essential for identifying potential unintended effects and evaluating the safety and environmental implications of genetically modified organisms (GMOs). This knowledge is crucial for regulatory compliance and fostering public trust in biotechnology by demonstrating transparency in genetic modifications.
View Article and Find Full Text PDFProteomics
January 2025
Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK.
Marine plastispheres represent dynamic microhabitats where microorganisms colonise plastic debris and interact. Metaproteomics has provided novel insights into the metabolic processes within these communities; however, the early metabolic interactions driving the plastisphere formation remain unclear. This study utilised metaproteomic and metagenomic approaches to explore early plastisphere formation on low-density polyethylene (LDPE) over 3 (D3) and 7 (D7) days, focusing on microbial diversity, activity and biofilm development.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2025
School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
Microbial communities have shown promising potential in degrading complex biopolymers, producing value-added products through collaborative metabolic functionality. Hence, developing synthetic microbial consortia has become a predominant technique for various biotechnological applications. However, diverse microbial entities in a consortium can engage in distinct biochemical interactions that pose challenges in developing mutualistic communities.
View Article and Find Full Text PDFFEBS J
January 2025
Institute of Biomaterials, The First Affiliated Hospital of Ningbo university, China.
The extracellular matrix (ECM) is a network of proteins and other molecules that encase and support cells and tissues in the body. As clinical and biotechnological uses of ECM are expanding, it is essential to assess the environmental impact associated with its production. Due to high levels of customization, various laboratories employ distinct methods; therefore, this study evaluates three common protocols.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou, Taipei, 112304, Taiwan.
Background: Effective treatment for Alzheimer's disease (AD) remains an unmet need. Thus, identifying patients with mild cognitive impairment (MCI) who are at high-risk of progressing to AD is crucial for early intervention.
Methods: Blood-based transcriptomics analyses were performed using a longitudinal study cohort to compare progressive MCI (P-MCI, n = 28), stable MCI (S-MCI, n = 39), and AD patients (n = 49).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!