Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Neurovisceral Integration Model posits that shared neural networks support the effective regulation of emotions and heart rate, with heart rate variability (HRV) serving as an objective, peripheral index of prefrontal inhibitory control. Prior neuroimaging studies have predominantly examined both HRV and associated neural functional connectivity at rest, as opposed to contexts that require active emotion regulation. The present study sought to extend upon previous resting-state functional connectivity findings, examining task-related HRV and corresponding amygdala functional connectivity during a cognitive reappraisal task. Seventy adults (52 older and 18 younger adults, 18-84 years, 51% male) received instructions to cognitively reappraise negative affective images during functional MRI scanning. HRV measures were derived from a finger pulse signal throughout the scan. During the task, younger adults exhibited a significant inverse association between HRV and amygdala-medial prefrontal cortex (mPFC) functional connectivity, in which higher task-related HRV was correlated with weaker amygdala-mPFC coupling, whereas older adults displayed a slight positive, albeit non-significant correlation. Furthermore, voxelwise whole-brain functional connectivity analyses showed that higher task-based HRV was linked to weaker right amygdala-posterior cingulate cortex connectivity across older and younger adults, and in older adults, higher task-related HRV correlated positively with stronger right amygdala-right ventrolateral prefrontal cortex connectivity. Collectively, these findings highlight the importance of assessing HRV and neural functional connectivity during active regulatory contexts to further identify neural concomitants of HRV and adaptive emotion regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2023.120136 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!