Background: Cardiac fibrosis represents a key element in the pathophysiology of heart failure with preserved ejection fraction (HFpEF), a condition highly prevalent amongst geriatric patients, especially if diabetic. The microRNA 181c (miR-181c) has been shown to be associated with the response to exercise training in HFpEF patients and has been also linked to diabetic cardiovascular complications. However, the underlying mechanisms have not been fully elucidated.
Objective: To measure circulating miR-181c in elderly patients with HFpEF and diabetes mellitus (DM) and identify gene targets pathophysiologically relevant in HFpEF.
Methods: We quantified circulating miR-181c in frail older adults with a confirmed diagnosis of HFpEF and DM, and, as control, we enrolled age-matched subjects without HFpEF and without DM. We validated in human cardiac fibroblasts the molecular mechanisms linking miR-181c to a pro-fibrotic response.
Results: 51 frail patients were included :34 patients with DM and HFpEF and 17 age-matched controls. We observed that miR-181c was significantly upregulated (p < 0.0001) in HFpEF patients vs controls. We confirmed in vitro that miR-181c is targeting PRKN and SMAD7.
Conclusions: We demonstrate that miR-181c levels are significantly increased in frail elderly adults with DM and HFpEF and that miR-181c targets PRKN and SMAD7 in human cardiac fibroblasts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330534 | PMC |
http://dx.doi.org/10.1016/j.mad.2023.111818 | DOI Listing |
Gut Microbes
December 2025
Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia.
The gut microbiota is a crucial link between diet and cardiovascular disease (CVD). Using fecal metaproteomics, a method that concurrently captures human gut and microbiome proteins, we determined the crosstalk between gut microbiome, diet, gut health, and CVD. Traditional CVD risk factors (age, BMI, sex, blood pressure) explained < 10% of the proteome variance.
View Article and Find Full Text PDFNon-tuberculous Mycobacterial Pulmonary Disease (NTM-PD) is a chronic disease characterised by progressive inflammatory lung damage due to infection by non-tuberculous mycobacteria (NTM). Global prevalence of NTM-PD is generally low but is rising, likely due to a combination of increased surveillance, increasing multimorbidity and improved diagnostic techniques. Most disease is caused by Mycobacterium avium complex species.
View Article and Find Full Text PDFPediatr Rheumatol Online J
December 2024
Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
Background: This study aims to develop Z-Score models to normalize measurements of three coronary arteries and enhance the diagnosis of Kawasaki disease (KD) in children from newborns to 10 years old. Developing a reliable Z-Score model is challenging, as some existing models fail the normality test. Overcoming these challenges is crucial for improving KD diagnosis.
View Article and Find Full Text PDFCardiovasc Diabetol
December 2024
Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China.
Atrial fibrillation (AF) is the most prevalent arrhythmia in clinical practice, and obesity serves as a significant risk factor for its development. The underlying mechanisms of obesity-related AF remain intricate and have yet to be fully elucidated. We have identified FPR2 as a potential hub gene involved in obesity-related AF through comprehensive analysis of four transcriptome datasets from AF patients and one transcriptome dataset from obese individuals, and its expression is up-regulated in both AF and obese individuals.
View Article and Find Full Text PDFCardiovasc Diabetol
December 2024
INSERMU1138-Centre de Recherche Des Cordeliers, Paris Cite University, Sorbonne University, 75006, Paris, France.
Hypertension, cardiovascular disease and kidney failure are associated with persistent hyperglycaemia and the subsequent development of nephropathy in people with diabetes. Diabetic nephropathy is associated with widespread vascular disease affecting both the kidney and the heart from an early stage. However, the risk of diabetic nephropathy in people with type 1 diabetes is strongly genetically determined, as documented in familial transmission studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!