Fragmentation of degraded plastics and release of smaller secondary microplastics is usually attributed to the growth of environmental stress cracks. Analysis of crack patterns derived from chemical degradation can be useful not only for assessing the cause of plastic fracture and evaluating the useful lifetime of a product, but it can also potentially provide valuable information on the generation of microplastics. However, the literature with respect to microplastics generation is generally limited to surface observations of polypropylene and polyethylene. Here, we used ion-beam milling to prepare cross-sections of fragments of 15 plastic products made from five commodity plastics (polypropylene, polyethylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate) that were collected at two beaches in Japan, and then we examined the microstructures of those cross-sections by means of scanning electron microscopy and energy dispersive X-ray spectroscopy. Crack growth in the depth direction was examined to provide insights into microplastic generation behavior. In all of the polypropylene samples, and some of the low-density polyethylene and polystyrene samples, cracks with a depth exceeding 100 μm from the sample surface were observed. Considering that crack growth causes fracture of degraded plastic and microplastic release, these observations suggest the release of sharp-edged microplastics from the crack fracture surface. In contrast, in the high-density polyethylene and polyvinyl chloride samples, crack growth was limited to within 20 μm of the sample surface, suggesting the release of irregularly shaped microplastics and additive particles. The present results suggest that the degradation behavior of plastic products in the depth direction is dependent on the type of plastic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.138794 | DOI Listing |
Polymers (Basel)
December 2024
College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
Rubber is widely used in situations involving cyclic loads, and the influence of temperature on rubber properties is particularly pronounced under cyclic loading. In this study, mechanical property tests and crack propagation tests of carbon black-filled hydrogenated nitrile butadiene rubber were conducted at four different operating temperatures. Based on the results of the crack propagation tests, the temperature-dependent characteristics of the Paris-Erdogan parameters and strain energy density were clarified.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Institute of Road and Bridge Engineering, Dalian Maritime University, Dalian 116026, China.
Nano metakaolin (NMK) has attracted considerable interest for its potential to improve the durability of cementitious materials. However, the effect of NMK on the splitting tensile performance of concrete has not been systematically investigated. This study investigates the splitting tensile performance of NMK concrete and analyzes its failure behavior under splitting load.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada.
This study presents an experimental investigation of the quasi-static and dynamic behavior of a quasi-isotropic carbon-fiber-reinforced composite subjected to in-plane compressive loading. The experiments were performed at strain rates ranging from 4×10-5 to ∼1200 s-1 to quantifythe strain-rate-dependent response, failure propagation, and damage morphology using advanced camera systems. Fiber bridging, kink band formation, dominance of interlaminar failure, and inter-fiber failure fracture planes are evidenced through post-mortem analysis.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
Concrete, as the most widely used construction material globally, is prone to cracking under the influence of external factors such as mechanical loads, temperature fluctuations, chemical corrosion, and freeze-thaw cycles. Traditional concrete crack repair methods, such as epoxy resins and polymer mortars, often suffer from a limited permeability, poor compatibility with substrates, and insufficient long-term durability. Microbial biogrouting technology, leveraging microbial-induced calcium carbonate precipitation (MICP), has emerged as a promising alternative for crack sealing.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
University Coimbra, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Mechanical Engineering, 3030-788 Coimbra, Portugal.
The stop-hole technique is a well-known strategy to extend the fatigue life of cracked components. The ability to estimate fatigue life after the hole is important for safety reasons. The objective here is to develop strategies for the accurate prediction of initiation and propagation life ahead of the stop-hole.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!