Anthropogenic-mediated climate change severely affects the oceans. The most common definition of a Marine heatwave (MHW) considers that water temperatures rise above the 90th percentile threshold values, based on the last 30 years' average of temperature records for a particular location, and remains this high for five or more days. The current review addresses the evolution of definitions used, as well as the current understanding of the driving mechanisms of MHWs. The collected information shows that the study of MHW is recent and there is a growing interest among the scientific community on this topic, motivated largely by the impacts that pose to marine ecosystems. Further, a more in-depth analysis was carried out, addressing the impacts of MHW events on marine decapod crustacean species. The investigation of such impacts has been carried out using three main methodological approaches: the analysis of in situ records, observed in 33 studies; simulating MHW events through mesocosm experiments, found in 6 studies; and using computational predictive models, detected in 1 study. From the literature available it has been demonstrated that consequences are serious for these species, from altered expansion ranges to alterations of assemblages' abundances. Still, studies addressing the impacts of these extreme events on the decapod communities are scarce, often only limited to adult life forms of commercially relevant species, neglecting non-commercial ones and meroplanktonic life stages. Despite the severe impacts on the health of ecosystems, repercussions on socioeconomic human activities, like fisheries and aquaculture, are also a reality. Overall, this review aims to raise scientific and public awareness of these marine events, which are projected to increase in intensity and frequency in the coming decades. Therefore, there is a growing need to better understand and predict the mechanisms responsible for these extreme events and the impacts on key species, like decapod crustaceans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.116004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!