Herein, a novel magnetic relaxation sensing strategy based on the change in Fe content has been proposed by utilizing the conversion of Fe ions to Prussian blue (PB) precipitates. Compared with the common detection approach based on the valence state change of Fe ions, our strategy can cause a larger change in the relaxation time of water protons and higher detection sensitivity since PB precipitate can induce a larger change in the Fe ion concentration and has a weaker effect on the relaxation process of water protons relative to Fe ions. Then, we employ alkaline phosphatase (ALP) as a model target to verify the feasibility and detection performance of the as-proposed strategy. Actually, ascorbic acid (AA) generated from the ALP-catalyzed L-ascorbyl-2-phosphate hydrolysis reaction can reduce potassium ferricyanide into potassium ferrocyanide, and potassium ferrocyanide reacts with Fe to form PB precipitates, leading to a higher relaxation time. Under optimum conditions, the method for ALP detection has a wide linear range from 5 to 230 mU/mL, and the detection limit is 0.28 mU/mL, sufficiently demonstrating the feasibility and satisfactory analysis performance of this strategy, which opens up a new path for the construction of magnetic relaxation sensors. Furthermore, this strategy has also been successfully applied to ascorbic acid oxidase detection, suggesting its expansibility in magnetic relaxation detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2023.124579 | DOI Listing |
Strahlenther Onkol
January 2025
Department of Radiation Oncology, Radboud university medical center, Nijmegen, The Netherlands.
Purpose: This study focused on reducing the margin for prostate cancer treatment using magnetic resonance imaging-guided radiotherapy by investigating the intrafractional motion of the prostate and different motion-mitigation strategies.
Methods: We retrospectively analyzed intrafractional prostate motion in 77 patients with low- to intermediate-risk prostate cancer treated with five fractions of 7.25 Gy on a 1.
ACS Nano
January 2025
Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
Spiking neural networks seek to emulate biological computation through interconnected artificial neuron and synapse devices. Spintronic neurons can leverage magnetization physics to mimic biological neuron functions, such as integration tied to magnetic domain wall (DW) propagation in a patterned nanotrack and firing tied to the resistance change of a magnetic tunnel junction (MTJ), captured in the domain wall-magnetic tunnel junction (DW-MTJ) device. Leaking, relaxation of a neuron when it is not under stimulation, is also predicted to be implemented based on DW drift as a DW relaxes to a low energy position, but it has not been well explored or demonstrated in device prototypes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
Stabilizing large easy-axis type magnetic anisotropy in molecular complexes is a challenging task, yet it is crucial for the development of information storage devices and applications in molecular spintronics. Achieving this requires a deep understanding of electronic structure and the relationships between structure and properties to develop magneto-structural correlations that are currently unexplored in the literature. Herein, a series of five-coordinate distorted square pyramidal Co complexes [Co(L)(X)].
View Article and Find Full Text PDFJ Mater Chem B
January 2025
School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
Magnetic chromatography was exploited to fractionate suspensions of magnetoliposomes (SML: lumen-free lipid-encapsulated clusters of multiple magnetic iron-oxide nanoparticles) improving their colloidal properties and relaxivity (magnetic resonance image contrast capability). Fractionation (i) removed sub-populations that do not contribute to the MRI response, and thus (ii) enabled evaluation of the size-dependence of relaxivity for the MRI-active part, which was surprisingly weak in the 55-90 nm range. MC was therefore implemented for processing multiple PEGylated SML types having average sizes ranging from 85 to 105 nm, which were then shown to have strongly size-dependent uptake in an pancreatic cancer model.
View Article and Find Full Text PDFCurr Med Imaging
January 2025
Department of Radiology and Medical Imaging, King Saud University Medical City, King Saud University, Riyadh, KSA.
Background: Multiple sclerosis (MS) is one of the most common disabling central nervous system diseases affecting young adults. Magnetic resonance imaging (MRI) is an essential tool for diagnosing and following up multiple sclerosis. Over the years, many MRI techniques have been developed to improve the sensitivity of MS disease detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!