A consideration of the increased risk of schizophrenia due to prenatal maternal stress, and the possible role of microglia.

Prog Neuropsychopharmacol Biol Psychiatry

School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK. Electronic address:

Published: July 2023

Schizophrenia is caused by interaction of a combination of genetic and environmental factors. Of the latter, prenatal exposure to maternal stress is reportedly associated with elevated disease risk. The main orchestrators of inflammatory processes within the brain are microglia, and aberrant microglial activation/function has been proposed to contribute to the aetiology of schizophrenia. Here, we evaluate the epidemiological and preclinical evidence connecting prenatal stress to schizophrenia risk, and consider the possible mediating role of microglia in the prenatal stress-schizophrenia relationship. Epidemiological findings are rather consistent in supporting the association, albeit they are mitigated by effects of sex and gestational timing, while the evidence for microglial activation is more variable. Rodent models of prenatal stress generally report lasting effects on offspring neurobiology. However, many uncertainties remain as to the mechanisms underlying the influence of maternal stress on the developing foetal brain. Future studies should aim to characterise the exact processes mediating this aspect of schizophrenia risk, as well as focussing on how prenatal stress may interact with other risk factors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pnpbp.2023.110773DOI Listing

Publication Analysis

Top Keywords

maternal stress
12
prenatal stress
12
role microglia
8
schizophrenia risk
8
prenatal
6
stress
6
risk
5
schizophrenia
5
consideration increased
4
increased risk
4

Similar Publications

Background: Maternal obesity detrimentally affects placental function and fetal development. Both alternate-day fasting (ADF) and time-restricted feeding (TRF) are dietary interventions that can improve metabolic health, yet their comparative effects on placental function and fetal development remain unexplored.

Objectives: This study aims to investigate the effects of ADF and TRF on placental function and fetal development during maternal consumption of a high-fat diet (HFD).

View Article and Find Full Text PDF

The red blood cell (RBC) membrane is unique and crucial for maintaining structural-functional relationships. Maternal smoking induces significant changes in the morphological, rheological, and functional parameters of both maternal and foetal RBCs, mainly due to the continuous generation of the free radicals. The major aim of this study was to follow the consequences of a secondary stressor, like fungal infection, on the already compromised RBC populations.

View Article and Find Full Text PDF

Prenatal maternal stress (PNMS) determines lifetime mental and physical health. Here, we show in rats that PNMS has consequences for placental function and fetal brain development across four generations (F0-F3). Using a systems biology approach, comprehensive DNA methylation (DNAm), miRNA, and mRNA profiling revealed a moderate impact of PNMS in the F1 generation, but drastic changes in F2 and F3 generations, suggesting compounding effects of PNMS with each successive generation.

View Article and Find Full Text PDF

Skin, as the first line of defence of the human body, is exposed to dangers such as overheating substances, ultraviolet rays, and environmental pollutants, and the incidence of skin diseases is increasing annually. Oxidative stress plays a dominant role in most skin diseases. Abelmoschus manihot (L.

View Article and Find Full Text PDF

Maternal pre- and postnatal stress and maternal and infant gut microbiota features.

Psychoneuroendocrinology

January 2025

Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, the Netherlands.

Background: Maternal stress can have short and long term adverse (mental) health effects for the mother and her child. Previous evidence suggests that the gut microbiota may be a potential mediator and moderator for the effects of stress via various pathways. This study explored the maternal microbiota trajectory during pregnancy as well as the association between pre- and postnatal maternal stress and features of the maternal and infant gut microbiota during and after pregnancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!