AI Article Synopsis

  • - The study investigates how polygalacturonase (PG), specifically the raspberry enzyme RiPG2, interacts with polygalacturonase inhibiting protein (RiPGIP) and its substrate during fruit ripening.
  • - Researchers created a 3D structural model of RiPG2 and RiPGIP3, finding that RiPG2 has a unique right-handed β-helix structure and RiPGIP3 features a typical leucine-rich repeat (LRR) formation.
  • - The interaction between RiPG2 and RiPGIP3 allows RiPGIP3 to bind to RiPG2 while keeping the enzyme's active site accessible for pectin breakdown, suggesting a regulatory mechanism for enzyme activity in fruit ripening.

Article Abstract

Polygalacturonase (PG) is an important hydrolytic enzyme involved in pectin disassembly and the subsequent textural changes during fruit ripening. Although the interaction of fungal PGs with other proteins has been documented, the interaction of plant PGs with other plant proteins has not yet been studied. In this study, the molecular mechanisms involved in raspberry fruit ripening, particularly the polygalacturonase (RiPG) interaction with polygalacturonase inhibiting protein (RiPGIP) and substrate, were investigated with a structural approach. The 3D model of RiPG2 and RiPGIP3 was built using a comparative modeling strategy and validated using molecular dynamics (MD) simulations. The RiPG2 model structure comprises 11 complete coils of right-handed parallel β-helix architecture, with an average of 27 amino acid residues per turn. The structural model of the RiPGIP3 displays a typical structure of LRR protein, with the right-handed superhelical fold with an extended parallel β-sheet. The conformational interaction between the RiPG2 protein and RiPGIP3 showed that RiPGIP3 could bind to the enzyme and thereby leave the active site cleft accessible to the substrate. All this evidence indicates that RiPG2 enzyme could interact with RiPGIP3 protein. It can be a helpful model for evaluating protein-protein interaction as a potential regulator mechanism of hydrolase activity during pectin disassembly in fruit ripening.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2023.108502DOI Listing

Publication Analysis

Top Keywords

fruit ripening
12
molecular dynamics
8
polygalacturonase ripg
8
inhibiting protein
8
protein ripgip
8
pectin disassembly
8
interaction
7
protein
5
fruit
5
model
5

Similar Publications

Ripening significantly influences fruit quality and commercial value. Peaches (Prunus persica), a climacteric fruit, exhibit increased ethylene biosynthesis and decreased fruit firmness during ripening. NAC-like proteins activated by AP3/P1 (NAP) proteins are a subfamily of NAC transcription factors, and certain NAPs have been shown to intervene in fruit ripening.

View Article and Find Full Text PDF

Functional interactions among H2O2, NO, H2S, and melatonin in the physiology, metabolism, and quality of horticultural Solanaceae.

J Exp Bot

December 2024

Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain.

Cellular signaling is a key component of both intra- and intercellular communication, playing a crucial role in the development of higher plants as well as in their responses to environmental conditions of both abiotic and biotic origin. In recent decades, molecules such as hydrogen peroxide (H2O2), nitric oxide (NO), hydrogen sulfide (H2S), and melatonin have gained significant relevance in plant physiology and biochemistry due to their signaling functions and their interactions, forming a comprehensive cellular communication network. The Solanaceae family of plants includes a group of horticultural crops of great global importance, for instance, tomatoes, eggplants, and peppers, which are of major agroeconomic significance due to their widespread cultivation and consumption.

View Article and Find Full Text PDF

[Study on differences in metabolism and transcription of ginseng seeds after morphological post ripening by space flight].

Zhongguo Zhong Yao Za Zhi

September 2024

Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences Changchun 130112, China College of Pharmacy and Biological Engineering, Chengdu University Chengdu 610106, China.

To explore the difference in metabolism and transcription between seeds experiencing space flight and ground seeds after morphological post ripening, this study utilized ginseng seeds experiencing space flight and ground seeds as materials. Metabolomics and transcriptomics analyses were conducted using ultra-high performance liquid chromatography-mass spectrometry(UPLC-MS) and high-throughput transcriptome sequencing(RNA-seq) technologies, so as to identify differential terpenoid metabolites, differential endogenous hormones, and differentially expressed genes. The results showed that through metabolomics analysis, a total of 22 differential terpenoid metabolites were identified in the experimental and control groups, including chikusetsusaponin FK_7, ginsenoside F_2, ginseno-side K, majoroside R_1, ginsenoside Re_5, 12-hydroxyabietic acid, etc; through transcriptomics analysis, 15 differential terpenoid metabolism-related differentially expressed genes were identified in the experimental and control groups, including FCase, AACT, PMK, etc, and these genes were integrated into the pathway based on the MEP and MVA.

View Article and Find Full Text PDF

Tomato fruit ripening is a complex developmental process that is important for fruit quality and shelf life. Many factors, including ethylene and several key transcription factors, have been shown to play important roles in the regulation of tomato fruit ripening. However, our understanding of the regulation of tomato fruit ripening is still limited.

View Article and Find Full Text PDF

The transcription factors ERF105 and NAC72 regulate expression of a sugar transporter gene and hexose accumulation in grape.

Plant Cell

December 2024

State Key Laboratory of Plant Diversity and Specialty Crops, and Beijing Key Laboratory of Grape Science and Oenology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.

Sugar transport plays a pivotal role in determining the productivity of plants and their capacity to act as carbon sinks. In the major fruit crop grapevine (Vitis vinifera L.), the transporter gene Vitis vinifera Sugars Will Eventually be Exported Transporter 15 (VvSWEET15)is strongly expressed during berry ripening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!