A novel photocatalyst, BiWO/NiO/Ag, with hierarchical flower-like Z-scheme heterojunction, which exhibited excellent stability and photocatalytic activity over a wide light spectrum, was firstly synthesized and used in the remediation of real oil sands process water (OSPW) and achieved complete removal of aromatics, classical naphthenic acids (NAs), and heteroatomic NAs after 6 h of photocatalytic treatment. The acute toxicity of OSPW was completely eliminated after only 2 h of treatment. h and ∙OH were found to be the major oxidative species in the photocatalytic system. The enhanced photocatalytic efficiency is the result of the unique Z-scheme electron transfer among electron mediators Ag, NiO, and BiWO, which was supported by the in-situ irradiated XPS. The study benefits the design of engineered passive treatment approach for OSPW remediation through solar light-driven catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.131441DOI Listing

Publication Analysis

Top Keywords

enhanced photocatalytic
8
photocatalytic treatment
8
naphthenic acids
8
real oil
8
oil sands
8
sands process
8
process water
8
photocatalytic
5
z-scheme plasmonic
4
plasmonic decorated
4

Similar Publications

The escalating global problem of antibiotic contamination in wastewater demands innovative and sustainable remediation technologies. This paper presents a highly efficient photocatalytic material for water purification: a three-dimensional ultra-porous structure of interconnected GaN hollow microtetrapods (aero-GaN), its performance being further enhanced by noble metal nanodot functionalization. This novel aero-nanomaterial achieves more than 90 % of tetracycline degradation within 120 min under UV and solar irradiation, demonstrating its effectiveness in both static and dynamic flow conditions, with the potential for reuse and recyclability.

View Article and Find Full Text PDF

Synergy of Copper Doping and Carbon Defect Engineering in Promoting C-C Coupling for Enhanced CO Photoreduction to Ethanol Activity.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Industrial Ecology and Environment Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.

Photocatalytic conversion of carbon dioxide (CO) to fuel provides an ideal pathway to achieving carbon neutrality. One significant hindrance in achieving the reduction of CO to higher energy density multicarbon products (C) was the difficulty in coupling C-C bonds efficiently. Copper (Cu) is considered the most suitable metal catalyst for C-C coupling to form C products in the CO reduction reaction (CORR), but it encounters challenges such as low product selectivity and slow catalytic efficiency.

View Article and Find Full Text PDF

The effects of filter fabrication approaches on photocatalytic abatement of formaldehyde in an indoor environment using a TiO-based air purifier system.

Environ Res

December 2024

Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea. Electronic address:

Titanium dioxide (TiO) is the most commonly used catalyst for fabricating commercial photocatalytic air purifier (AP) systems. The AP performance can be affected sensitively by the preparation conditions of filters and the physicochemical properties (e.g.

View Article and Find Full Text PDF

Degradation of AFB in edible oil by aptamer-modified TiO composite photocatalytic materials: Selective efficiency, degradation mechanism and toxicity.

Food Chem

December 2024

Food Engineering Technology Research Center/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China. Electronic address:

Most of the excessive aflatoxins in peanut oil are present at lower levels, and few photocatalysts have been reported for degrading low concentrations of aflatoxin B (AFB). This study employed aptamer-modified magnetic graphene oxide/titanium dioxide (MGO/TiO-aptamer) photocatalysts to degrade low concentrations of AFB in peanut oil, thoroughly investigating their selective efficiency, degradation mechanism, and product toxicity. The results indicated that the modification of aptamers on the surface of photocatalytic materials can enhance the selectivity of photocatalysts for AFB in peanut oil.

View Article and Find Full Text PDF

MXene-based composite photocatalysts for efficient degradation of antibiotics in wastewater.

Sci Rep

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!