Evolutionary perspectives on the deployment of immune factors following infection have been shaped by studies on a limited number of biomedical model systems with a heavy emphasis on vertebrate species. Although their contributions to contemporary immunology cannot be understated, a broader phylogenetic perspective is needed to understand the evolution of immune systems across Metazoa. In our study, we leverage differential gene expression analyses to identify genes implicated in the antiviral immune response of the acorn worm hemichordate, Saccoglossus kowalevskii, and place them in the context of immunity evolution within deuterostomes-the animal clade composed of chordates, hemichordates, and echinoderms. Following acute exposure to the synthetic viral double-stranded RNA analog, poly(I:C), we show that S. kowalevskii responds by regulating the transcription of genes associated with canonical innate immunity signaling pathways (e.g., nuclear factor κB and interferon regulatory factor signaling) and metabolic processes (e.g., lipid metabolism), as well as many genes without clear evidence of orthology with those of model species. Aggregated across all experimental time point contrasts, we identify 423 genes that are differentially expressed in response to poly(I:C). We also identify 147 genes with altered temporal patterns of expression in response to immune challenge. By characterizing the molecular toolkit involved in hemichordate antiviral immunity, our findings provide vital evolutionary context for understanding the origins of immune systems within Deuterostomia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210618PMC
http://dx.doi.org/10.1093/molbev/msad097DOI Listing

Publication Analysis

Top Keywords

acorn worm
8
saccoglossus kowalevskii
8
antiviral immunity
8
immune systems
8
immune
5
genes
5
induced immune
4
immune reaction
4
reaction acorn
4
worm saccoglossus
4

Similar Publications

Article Synopsis
  • The deep-sea acorn worm Quatuoralisia malakhovi belongs to the phylum Hemichordata and possesses unique anatomical features due to its epibenthic lifestyle and habitat, yet its morphology remains under-researched.
  • The research involves detailed histological analysis of the reproductive system, revealing that Q. malakhovi has separate sexes that are externally indistinguishable and includes observations of the testicular structure and function.
  • Findings include specific details about testis architecture, the absence of yolk cells, and the fine structure of spermatozoa, which are characterized by an acorn-shaped head and a long flagellum.
View Article and Find Full Text PDF

A box was designed to keep the acorn worm Saccoglossus mereschkowskii in laboratory conditions for 60 days and to monitor its behavior and feeding. Locomotion and construction of burrows in the sediment were found to be due to peristaltic movements of the proboscis, which periodically changes its shape from cylindrical to mushroom-like, and vice versa. Worms built U-shaped burrows connected with burrows of neighbor worms by flank anastomoses, thus producing a branched system of passages in a sediment layer up to 8 cm deep.

View Article and Find Full Text PDF

Hemichordata has always played a central role in evolutionary studies of Chordata due to their close phylogenetic affinity and shared morphological characteristics. Hemichordates had no meiofaunal representatives until the surprising discovery of a microscopic, paedomorphic enteropneust Meioglossus psammophilus (Harrimaniidae, Hemichordata) from the Caribbean in 2012. No additional species have been described since, questioning the broader distribution and significance of this genus.

View Article and Find Full Text PDF

Worm-like endosymbionts were found in the hepatic region of the digestive tract of the deep-sea acorn worm Quatuoralisia malakhovi Ezhova et Lukinykh, 2022 (family Torquaratoridae) from the Bering Sea. The symbionts were assigned to the taxon Nemertodermatida on the basis of histological examination. Torquaratoridae are similar in feeding type to holothuroids, which have also been found to have Xenacoelomorpha endosymbionts.

View Article and Find Full Text PDF

Hemichordates are an important group for investigating the evolution of bilaterian nervous systems. As the closest chordate outgroup with a bilaterally symmetric adult body plan, hemichordates are particularly informative for exploring the origins of chordates. Despite the importance of hemichordate neuroanatomy for testing hypotheses on deuterostome and chordate evolution, adult hemichordate nervous systems have not been comprehensively described using molecular techniques, and classic histological descriptions disagree on basic aspects of nervous system organization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!