Malaria is among the top-ranked parasitic diseases that pose a threat to the existence of the human race. This study evaluated the antimalarial effect of the rhizome of in infected mice, performed secondary metabolite profiling and detailed computational antimalarial evaluation through molecular docking, molecular dynamics (MD) simulation and density functional theory methods. The antimalarial potential of was performed using the chemosuppressive model; secondary metabolite profiling was carried out using liquid chromatography-mass spectrometry (LC-MS). Molecular docking was performed with Autodock Vina while the MD simulation was performed with Schrodinger desmond suite for 100 ns and DFT calculations with B3LYP (6-31G) basis set. The extract showed 64% parasitaemia suppression, with a dose-dependent increase in activity up to 200 mg/kg. The chemical profiling of the extract tentatively identified eight phytochemicals. The molecular docking studies with plasmepsin II and dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) identified gingerenone A as the hit molecule, and MMGBSA values corroborate the binding energies obtained. The electronic parameters of gingerenone A revealed its significant antimalarial potential. The antimalarial activity elicited by the extract of and the bioactive chemical constituent supports its usage in ethnomedicine.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2023.2205949 | DOI Listing |
Eur J Pharmacol
January 2025
Department of Urology, Brown Cancer Center, 505 S Hancock Street, Louisville, KY, USA. Electronic address:
Manzamine A, a natural compound derived from various sponge genera, features a β-carboline structure and exhibits a range of biological activities, including anti-inflammatory and antimalarial effects. Its potential as an anticancer agent has been explored in several tumor models, both in vitro and in vivo, showing effects through mechanisms such as cytotoxicity, regulation of the cell cycle, inhibition of cell migration, epithelial-to-mesenchymal transition (EMT), autophagy, and apoptosis through multi-target interactions of E2F transcriptional factors, ribosomal S6 kinases, androgen receptor (AR), SIX1, GSK-3β, V-ATPase, and p53/p21/p27 cascades. This systematic review evaluates existing literature on the potential application of this marine alkaloid as a novel cancer therapy, highlighting its promising ability to inhibit cancer cell growth while causing minimal side effects.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada.
Preclinical studies have shown that the anti-malarial drug hydroxychloroquine (HCQ) improves the anti-cancer effects of various therapeutic agents by impairing autophagy. These findings are difficult to translate in vivo as reaching an effective HCQ concentration at the tumor site for extended times is challenging. Previously, we found that free HCQ in combination with gefitinib (Iressa, ZD1839) significantly reduced tumor volume in immunocompromised mice bearing gefitinib-resistant JIMT-1 breast cancer xenografts.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
: , a bacterium residing in hair follicles, triggers acne by inducing monocyte-mediated inflammatory cytokine production. Gedunin, a limonoid derived from (commonly known as neem), is renowned for its antifungal, antimalarial, anticancer, anti-inflammatory, and neuroprotective effects. However, its role in mitigating -induced skin inflammation remains unexplored.
View Article and Find Full Text PDFMolecules
January 2025
Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea.
This study investigates the antimalarial potential of extracts and compounds from various plants used in traditional Korean medicine, in response to the increasing resistance of to standard treatments such as chloroquine and artemisinin. The antimalarial activity screening was conducted on 151 extracts, identifying the top seven candidates, including (50% ethanol and 100% methanol extract), , (hot water and 50% ethanol extract), , and . Among these, was identified as the top priority for further analysis due to its high antimalarial activity and high yield of bioactive compounds.
View Article and Find Full Text PDFMolecules
January 2025
School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
Malaria, caused by species and transmitted by mosquitoes, continues to pose a significant global health threat. Pipecolisporin, a cyclic hexapeptide isolated from , has emerged as a promising antimalarial candidate due to its potent biological activity and stability. This study explores the synthesis, antimalarial activity, and computational studies of pipecolisporin, aiming to better understand its therapeutic potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!