A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Temperature Dependent Hydrogen Bond Toward High Emission in an Emerging Indium-Based Perovskite. | LitMetric

Temperature Dependent Hydrogen Bond Toward High Emission in an Emerging Indium-Based Perovskite.

Small

Institute of New Energy Technology, Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, 510632, China.

Published: September 2023

Low-dimensional organic-inorganic hybrid perovskites (OIHPs) with broadband emission attract immense scientific interest due to their potential application for the next generation of solid-state lighting. However, due to low exciton utilization, organic cations generally adjust structure rather than contribute the band edge to affect optical properties. Based on this, OIHPs are usually allowed to obtain a low photoluminescence quantum yield (PLQY). Herein, a good charge transfer carrier (p-phenylenediamine, PPDA) as organic cation is rationally employed and a novel indium-based perovskite is synthesized. By coupling with H O molecules, a strong interaction between organic and inorganic components is realized by hydrogen bonding, which has good transportability and greatly improves the exciton utilization. The regions of hydrogen bonding show high electron mobility, combined with the induced recombination center, improving the progress of charge relaxation. As a result, the regulation of hydrogen bond strength based on the microstructure optimization directly determines the optical emission intensity, realizing nearly 100% PLQY. Further, the polyhydrogen bond structure makes each component a stronger interaction, showing high stability in polar, organic, and acidic solvent, as well as long-term storing, which represents one of the highest overall performances for lighting in OIHPs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202302354DOI Listing

Publication Analysis

Top Keywords

hydrogen bond
8
indium-based perovskite
8
exciton utilization
8
hydrogen bonding
8
temperature dependent
4
hydrogen
4
dependent hydrogen
4
bond high
4
high emission
4
emission emerging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!