Motivation: Allostery enables changes to the dynamic behavior of a protein at distant positions induced by binding. Here, we present APOP, a new allosteric pocket prediction method, which perturbs the pockets formed in the structure by stiffening pairwise interactions in the elastic network across the pocket, to emulate ligand binding. Ranking the pockets based on the shifts in the global mode frequencies, as well as their mean local hydrophobicities, leads to high prediction success when tested on a dataset of allosteric proteins, composed of both monomers and multimeric assemblages.
Results: Out of the 104 test cases, APOP predicts known allosteric pockets for 92 within the top 3 rank out of multiple pockets available in the protein. In addition, we demonstrate that APOP can also find new alternative allosteric pockets in proteins. Particularly interesting findings are the discovery of previously overlooked large pockets located in the centers of many protein biological assemblages; binding of ligands at these sites would likely be particularly effective in changing the protein's global dynamics.
Availability And Implementation: APOP is freely available as an open-source code (https://github.com/Ambuj-UF/APOP) and as a web server at https://apop.bb.iastate.edu/.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185404 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btad275 | DOI Listing |
J Chem Inf Model
January 2025
Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States.
mTOR plays a crucial role in PI3K/AKT/mTOR signaling. We hypothesized that mTOR activation mechanisms driving oncogenesis can advise effective therapeutic designs. To test this, we combined cancer genomic analysis with extensive molecular dynamics simulations of mTOR oncogenic variants.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutcihe (STEBICEF) Università di Palermo, Via Archirafi 32, 90123 Palermo.
CDK2 plays a pivotal role in controlling the cell cycle progression in eukaryotes and for this reason, it has been the subject of several studies for suitable inhibitors in the last decades. But more than 30 years of basic research have not generated an inhibitor as marketed drugs. Some inhibitors are to date in early phase clinical development.
View Article and Find Full Text PDFIn Silico Pharmacol
January 2025
Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India.
Unlabelled: Globally, there is an increase in the prevalence of metabolic illnesses, including diabetes mellitus. However, current therapies for diabetes and other metabolic illnesses are not well understood. Pharmacological treatment of type 2 diabetes is challenging, moreover, the majority of antidiabetic medications are incompatible with individuals who have cardiac disease, renal illness, or liver damage.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China. Electronic address:
The small GTPase Ras is among the most frequently mutated genes and its mutations often drive oncogenesis across various cancers. While the role of NRas phosphorylation at S89 in the context of a Q61R mutation in melanoma genesis remains controversial, the impact of S89 phosphorylation on NRas function has not been fully elucidated. In this study, we employed the S89D phosphorylation-mimetic mutation and demonstrated that the S89D mutation alone activated all Ras isoforms by increasing the GTP-bound population, thereby promoting ERK phosphorylation and cell proliferation.
View Article and Find Full Text PDFUnlabelled: β-arrestins (βarrs) are key regulators of G protein-coupled receptors (GPCRs), essential for modulating signaling pathways and physiological processes. While current pharmacological strategies target GPCR orthosteric and allosteric sites, as well as G protein transducers, comparable tools for studying βarrs are lacking. Here, we present the discovery and characterization of novel small-molecule allosteric inhibitors of βarrs through comprehensive biophysical, biochemical, pharmacological, and structural analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!