Climate change is one of the primary causes of species redistribution and biodiversity loss, especially for threatened and endemic important plant species. Therefore, it is vital to comprehend "how" and "where" priority medicinal and aromatic plants (MAPs) might be effectively used to address conservation-related issues under rapid climate change. In the present study, an ensemble modelling approach was used to investigate the present and future distribution patterns of Aquilegia fragrans Benth. under climate change in the entire spectrum of Himalayan biodiversity hotspot. The results of the current study revealed that, under current climatic conditions, the northwest states of India (Jammu and Kashmir, Himachal Pradesh and the northern part of Uttarakhand), the eastern and southern parts of Pakistan Himalaya have highly suitable climatic conditions for the growth of A. fragrans. The ensemble model exhibited high forecast accuracy, with temperature seasonality and precipitation seasonality as the main climatic variables responsible for the distribution of the A. fragrans in the biodiversity hotspot. Furthermore, the study predicted that future climate change scenarios will diminish habitat suitability for the species by -46.9% under RCP4.5 2050 and -55.0% under RCP4.5 2070. Likewise, under RCP8.5, the habitat suitability will decrease by -51.7% in 2050 and -94.3% in 2070. The current study also revealed that the western Himalayan area will show the most habitat loss. Some currently unsuitable regions, such as the northern Himalayan regions of Pakistan, will become more suitable under climate change scenarios. Hopefully, the current approach may provide a robust technique and showcases a model with learnings for predicting cultivation hotspots and developing scientifically sound conservation plans for this endangered medicinal plant in the Himalayan biodiversity hotspot.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-023-11245-2 | DOI Listing |
Curr Opin Pulm Med
March 2025
Department of Medicine (Pulmonary & Critical Care), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
J Sustain Tour
April 2024
Faculty of Business, Economics and Law, The University of Queensland, Business School, St Lucia, Queensland, Australia.
Eating less meat when dining out can help mitigate climate change. Plant-based meats can facilitate the transition to a more environmentally sustainable tourism sector. However, uptake of these products remains low.
View Article and Find Full Text PDFIDCases
January 2025
Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Leipzig University Medical Center, Leipzig, Germany.
An 18-year-old male patient from Ukraine, living in Germany for 2 years, presented with a painless subcutaneous swelling on the left cheek that had been present for several months. Finally, the diagnosis of subcutaneous dirofilariasis caused by was confirmed by 12S rRNA gene PCR and sequencing from tissue by nematode-specific PCRs followed by sequencing after surgical resection of the lesion. Microfilaremia was ruled out and no further treatment was required.
View Article and Find Full Text PDFEnergy Fuels
January 2025
Geothermal Energy and Geofluids Group, Institute of Geophysics, Department of Earth and Planetary Sciences, ETH Zurich, Zurich 8092, Switzerland.
Carbon capture and storage (CCS) and CO-based geothermal energy are promising technologies for reducing CO emissions and mitigating climate change. Safe implementation of these technologies requires an understanding of how CO interacts with fluids and rocks at depth, particularly under elevated pressure and temperature. While CO-bearing aqueous solutions in geological reservoirs have been extensively studied, the chemical behavior of water-bearing supercritical CO remains largely overlooked by academics and practitioners alike.
View Article and Find Full Text PDFHeliyon
January 2025
Risk and Vulnerability Science Centre, Faculty of Science and Agriculture, University of Fort Hare, P. Bag X1314, 1 King William's Town Road, Alice, 5700, South Africa.
This study explores the factors influencing smallholder farmers' decisions on livestock ownership and herd size in the context of climate change. A cross-sectional approach was employed, using a multi-stage sampling method to survey 600 smallholder farmers, 495 of whom were engaged in livestock production. Data were collected through a semi-structured questionnaire and analysed using a double hurdle model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!