Ataxia and impaired motor learning are both fundamental features in diseases affecting the cerebellum. However, it remains unclarified whether motor learning is impaired only when ataxia clearly manifests, nor it is known whether the progression of ataxia, the speed of which often varies among patients with the same disease, can be monitored by examining motor learning. We evaluated motor learning and ataxia at intervals of several months in 40 patients with degenerative conditions [i.e., multiple system atrophy (MSA), Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3), SCA6, and SCA31]. Motor learning was quantified as the adaptability index (AI) in the prism adaptation task and ataxia was scored using the Scale for the Assessment and Rating of Ataxia (SARA). We found that AI decreased most markedly in both MSA-C and MSA-P, moderately in MJD, and mildly in SCA6 and SCA31. Overall, the AI decrease occurred more rapidly than the SARA score increase. Interestingly, AIs remained normal in purely parkinsonian MSA-P patients (n = 4), but they dropped into the ataxia range when these patients started to show ataxia. The decrease in AI during follow-up (dAI/dt) was significant in patients with SARA scores < 10.5 compared with patients with SARA scores ≥ 10.5, indicating that AI is particularly useful for diagnosing the earlier phase of cerebellar degeneration. We conclude that AI is a useful marker for progressions of cerebellar diseases, and that evaluating the motor learning of patients can be particularly valuable for detecting cerebellar impairment, which is often masked by parkinsonisms and other signs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269492PMC
http://dx.doi.org/10.1007/s12311-023-01545-1DOI Listing

Publication Analysis

Top Keywords

motor learning
24
ataxia
10
motor
6
learning
6
patients
6
temporal relationship
4
relationship impairment
4
impairment cerebellar
4
cerebellar motor
4
learning deterioration
4

Similar Publications

Background: In recent years, an increasing number of scholars have begun to focus on the relationship between children's motor development and school activities, with the relationship between children's fine motor skills and academic achievement being a particularly researched area. However, due to different research perspectives among scholars, the results in this field have been somewhat controversial. Therefore, this study aims to delve deeper into the relationship between children's fine motor skills and their various academic abilities through systematic review and meta-analysis.

View Article and Find Full Text PDF

Personalized prediction of stroke outcome using lesion imaging markers is still too imprecise to make a breakthrough in clinical practice. We performed a combined prediction and brain mapping study on topographic and connectomic lesion imaging data to evaluate (i) the relationship between lesion-deficit associations and their predictive value and (ii) the influence of time since stroke. In patients with first-ever ischaemic stroke, we first applied high-dimensional machine learning models on lesion topographies or structural disconnection data to model stroke severity (National Institutes of Health Stroke Scale 24 h/3 months) and functional outcome (modified Rankin Scale 3 months) in cross-validation.

View Article and Find Full Text PDF

Reinforcement Learning is Impaired in the Sub-acute Post-stroke Period.

Neurorehabil Neural Repair

January 2025

Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA.

Background: In humans, most spontaneous recovery from motor impairment after stroke occurs in the first 3 months. Studies in animal models show higher responsiveness to training over a similar time-period. Both phenomena are often attributed to a milieu of heightened plasticity, which may share some mechanistic overlap with plasticity associated with normal motor learning.

View Article and Find Full Text PDF

Clinical validation of an individualized auto-adaptative serious game for combined cognitive and upper limb motor robotic rehabilitation after stroke.

J Neuroeng Rehabil

January 2025

Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Neuro Musculo Skeletal Lab (NMSK), UCLouvain, Avenue Mounier 53, 1200, Brussels, Belgium.

Background: Intensive rehabilitation through challenging and individualized tasks are recommended to enhance upper limb recovery after stroke. Robot-assisted therapy (RAT) and serious games could be used to enhance functional recovery by providing simultaneous motor and cognitive rehabilitation.

Objective: The aim of this study is to clinically validate the dynamic difficulty adjustment (DDA) mechanism of ROBiGAME, a robot serious game designed for simultaneous rehabilitation of motor impairments and hemispatial neglect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!