High-voltage pulsed electric fields (HV-PEF) delivered with invasive needle electrodes for electroporation applications is known to induce off-target blood-brain barrier (BBB) disruption. In this study, we sought to determine the feasibility of minimally invasive PEF application to produce BBB disruption in rat brain and identify the putative mechanisms mediating the effect. We observed dose-dependent presence of Evans Blue (EB) dye in rat brain when PEF were delivered with a skull mounted electrode used for neurostimulation application. Maximum region of dye uptake was observed while using 1500 V, 100 pulses, 100 µs and 10 Hz. Results of computational models suggested that the region of BBB disruption was occurring at thresholds of 63 V/cm or higher; well below intensity levels for electroporation. In vitro experiments recapitulating this effect with human umbilical vein endothelial cells (HUVEC) demonstrated cellular alterations that underlie BBB manifests at low-voltage high-pulse conditions without affecting cell viability or proliferation. Morphological changes in HUVECs due to PEF were accompanied by disruption of actin cytoskeleton, loss of tight junction protein-ZO-1 and VE-Cadherin at cell junctions and partial translocation into the cytoplasm. Uptake of propidium iodide (PI) in PEF treated conditions is less than 1% and 2.5% of total number of cells in high voltage (HV) and low-voltage (LV) groups, respectively, implying that BBB disruption to be independent of electroporation under these conditions. 3-D microfabricated blood vessel permeability was found to increase significantly following PEF treatment and confirmed with correlative cytoskeletal changes and loss of tight junction proteins. Finally, we show that the rat brain model can be scaled to human brains with a similar effect on BBB disruption characterized by electric field strength (EFS) threshold and using a combination of two bilateral HD electrode configurations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10439-023-03211-3 | DOI Listing |
Neuro Oncol
December 2024
Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA.
Cerebrospinal fluid (CSF) has emerged as a valuable liquid biopsy source for glioma biomarker discovery and validation. CSF produced within the ventricles circulates through the subarachnoid space, where the composition of glioma-derived analytes is influenced by the proximity and anatomical location of sampling relative to tumor, in addition to underlying tumor biology. The substantial gradients observed between lumbar and intracranial CSF compartments for tumor-derived analytes underscore the importance of sampling site selection.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Alzheimer's Disease Research Center, New York University Langone Health, New York, NY, USA.
Background: Cognitive impairment is one of the most frequently reported post-acute sequelae of COVID-19, yet the pathophysiology underpinning this symptom remains unknown. We aimed to explore the correlation of blood markers of inflammation, BBB disruption and neurodegeneration with MRI volume measurements in COVID-19 patients with and without cognitive impairment, and among patients with no prior history of COVID-19.
Method: We conducted a prospective study of COVID-19 patients (COV+; laboratory verified SARS-CoV-2 infection) and non-COVID-19 controls (COV-; no history of SARS-CoV-2 infection and negative SARS-CoV-2 nucleocapsid antibody).
Background: An intact blood-brain barrier (BBB) is critical for optimal brain health, and even transient or highly localized disruption of the BBB can have devastating consequences for neural functioning. BBB breakdown has been implicated in Alzheimer's Disease (AD) pathogenesis, and elevated BBB permeability has been observed in APOE e4 carriers compared to non-carriers. As prior studies have focused on a priori, AD-vulnerable regions rather than whole-brain analyses, little is understood about broader patterns of BBB breakdown that may relate to AD risk.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
Background: The blood-brain barrier (BBB) is considered the crucial part of neuroprotection from various neurological insults including infection, inflammation, and neurodegeneration including Alzheimer's disease (AD). The cerebral small vessel disease (CSVD) pathologies especially cerebral microbleeds (CMBs) and gadolinium enhancement might reflect the disruption of BBB. The correlation between BBB permeability measured by cerebrospinal fluid (CSF)/plasma albumin quotient (Qalb) and CSVD biomarkers is poorly understood.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
cheonan chungmu hospital, cheonan si, Korea, Republic of (South).
Background: Vascular contributions to dementia & Alzheimer's disease are increasing recognized. Recent studies have suggested that blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction, including the early clinical stages of AD. Apolipoprotein E4(APOE4), the major AD susceptibility gene, leads to accelerated blood-brain barrier breakdown & degeneration of brain capillary pericyte that maintain blood-brain barrier integrity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!