A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of polysaccharides on the rheological behaviour of soy-wheat protein aggregation and conformational changes during high-moisture extrusion. | LitMetric

Background: Due to the extrusion black box effect, polysaccharides determine the formation of meat-like fibrous structures by modulating the flow behaviour and structural changes of plant proteins under high-moisture extrusion conditions. However, there is limited knowledge on the mechanism of resolution. This study simulated the rheological properties of soy protein-wheat protein under 57% moisture conditions with addition of 4% sodium alginate (SA), 2% xanthan gum (XG), and 2% maltodextrin (MD). The effect of these polysaccharides on the aggregation behaviour and conformation of raw protein during high-moisture extrusion was investigated.

Results: It was revealed that the three polysaccharides were effective in increasing the interaction between proteins and between proteins and water. Among them, 4% SA elicited a significantly stronger storage modulus (gelation behaviour) compared to the control. Analysis of different zones of extrudates by protein electrophoresis, particle size, and turbidity showed that SA-4% was able to form more high molecular protein aggregates (> 245 kDa) and promoted crosslinking of low molecular subunits (< 48 kDa), resulting in moderately sized protein aggregated particles. Fluorescence and ultraviolet spectra showed the transformation of protein tertiary structures in different extrusion zones, confirming that the key extrusion zone for protein conformational transformation by polysaccharides is the die-cooling zone. Furthermore, stretching of polypeptide chains and accelerated protein rearrangement facilitated the formation of more fibrillar structures.

Conclusion: Theoretical support for polysaccharide modulation of plant protein quality in high moisture extruded products is provided by this study. © 2023 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.12669DOI Listing

Publication Analysis

Top Keywords

high-moisture extrusion
12
protein
5
polysaccharides
4
polysaccharides rheological
4
behaviour
4
rheological behaviour
4
behaviour soy-wheat
4
soy-wheat protein
4
protein aggregation
4
aggregation conformational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!