We present an implementation of the Frenkel exciton model into the OpenMolcas program package enabling calculations of collective electronic excited states of molecular aggregates based on a multiconfigurational wave function description of the individual monomers. The computational protocol avoids using diabatization schemes and, thus, supermolecule calculations. Additionally, the use of the Cholesky decomposition of the two-electron integrals entering pair interactions enhances the efficiency of the computational scheme. The application of the method is exemplified for two test systems, that is, a formaldehyde oxime and a bacteriochlorophyll-like dimer. For the sake of comparison with the dipole approximation, we restrict our considerations to situations where intermonomer exchange can be neglected. The protocol is expected to be beneficial for aggregates composed of molecules with extended π systems, unpaired electrons such as radicals or transition metal centers, where it should outperform widely used methods based on time-dependent density functional theory.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.3c00185DOI Listing

Publication Analysis

Top Keywords

multiconfigurational wave
8
wave function
8
implementation frenkel
8
frenkel exciton
8
exciton model
8
molecular aggregates
8
function implementation
4
model molecular
4
aggregates implementation
4
model openmolcas
4

Similar Publications

We present the theory and implementation of a fully variational wave function-density functional theory (DFT) hybrid model, which is applicable to many cases of strong correlation. We denote this model as the multiconfigurational self-consistent on-top pair-density functional theory (MC-srPDFT) model. We have previously shown how the multiconfigurational short-range DFT (MC-srDFT) hybrid model can describe many multiconfigurational cases of any spin symmetry and also state-specific calculations on excited states [Hedegård et al.

View Article and Find Full Text PDF

Full Quantum Dynamics Study for H Atom Scattering from Graphen.

J Phys Chem A

January 2025

Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay UMR 8214, 91405 Orsay, France.

This study deals with the understanding of hydrogen atom scattering from graphene, a process critical for exploring C-H bond formation and energy transfer during atom surface collision. In our previous work [Shi, L.; 2023, 159, 194102], starting from a cell with 24 carbon atoms treated periodically, we have achieved quantum dynamics (QD) simulations with a reduced-dimensional model (15D) and a simulation in full dimensionality (75D).

View Article and Find Full Text PDF

A hybrid meta on-top functional for multiconfiguration pair-density functional theory.

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry, Chemical Theory Center, University of Minnesota, Minneapolis, MN 55455-0431.

Multiconfiguration pair-density functional theory (MC-PDFT) was proposed a decade ago, but it is still in the early stage of density functional development. MC-PDFT uses functionals that are called on-top functionals; they depend on the density and the on-top pair density. Most MC-PDFT calculations to date have been unoptimized translations of generalized gradient approximations (GGAs) of Kohn-Sham density functional theory (KS-DFT).

View Article and Find Full Text PDF

Multiconfigurational Electronic Structure of Nickel Cross-Coupling Catalysts Revealed by X-ray Absorption Spectroscopy.

J Phys Chem Lett

January 2025

Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States.

Ni 2,2'-bipyridine complexes are commonly invoked intermediates in metallaphotoredox cross-coupling reactions. Despite their ubiquity, design principles targeting improved catalytic performance remain underdetermined. A series of Ni(bpy)(Ar)Cl (R = MeOOC, -Bu, R' = CH, CF) complexes were proposed to have multiconfigurational electronic structures on the basis of multiconfigurational/multireference calculations, with significant mixing of Ni → bpy metal-to-ligand charge transfer (MLCT) configurations into the ground-state wave function.

View Article and Find Full Text PDF

Unveiling the Redox Noninnocence of Metallocorroles: Exploring K-Edge X-ray Absorption Near-Edge Spectroscopy with a Multiconfigurational Wave Function Approach.

J Phys Chem Lett

November 2024

Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.

Article Synopsis
  • X-ray absorption near-edge spectroscopy (XANES) is a powerful tool used to study the electronic structure in catalysts, particularly focusing on the unusual behavior of ligands in transition-metal complexes.
  • The research utilized advanced computational methods, including time-dependent density functional theory (TDDFT) and multireference techniques, to analyze the K-edge XANES spectra of metallocorroles with metals like Fe, Mn, and Co.
  • This innovative approach revealed the complex roles of ligands in redox chemistry and improved predictions of XANES spectra, providing deeper insights into the electronic properties of these catalytically relevant complexes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!