Dysfunction of the RNA-binding protein (RBP) FUS implicated in RNA metabolism can cause amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. Mutations affecting FUS nuclear localization can drive RNA splicing defects and stimulate the formation of non-amyloid inclusions in affected neurons. However, the mechanism by which FUS mutations contribute to the development of ALS remains uncertain. Here we describe a pattern of RNA splicing changes in the dynamics of the continuous proteinopathy induced by mislocalized FUS. We show that the decrease in intron retention of FUS-associated transcripts represents the hallmark of the pathogenesis of ALS and is the earliest molecular event in the course of progression of the disease. As FUS aggregation increases, the pattern of RNA splicing changes, becoming more complex, including a decrease in the inclusion of neuron-specific microexons and induction of cryptic exon splicing due to the sequestration of additional RBPs into FUS aggregates. Crucially, the identified features of the pathological splicing pattern are also observed in ALS patients in both sporadic and familial cases. Our data provide evidence that both a loss of nuclear FUS function due to mislocalization and the subsequent cytoplasmic aggregation of mutant protein lead to the disruption of RNA splicing in a multistep fashion during FUS aggregation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287951PMC
http://dx.doi.org/10.1093/nar/gkad319DOI Listing

Publication Analysis

Top Keywords

rna splicing
20
fus
9
cytoplasmic aggregation
8
aggregation mutant
8
pattern rna
8
splicing changes
8
fus aggregation
8
splicing
7
rna
6
mutant fus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!