Background: Discovery of novel antimicrobial agents is in need to deal with antibiotic resistance. Elucidating the mechanism of action for established drugs contributes to this endeavor. DNA gyrase is a therapeutic target used in the design and development of new antibacterial agents. Selective antibacterial gyrase inhibitors are available; however, resistance development against them is a big challenge. Hence, novel gyrase inhibitors with novel mechanisms are required.
Objective: The aim of this study is to elucidate mode of action for existing DNA gyrase inhibitors and to pave the way towards discovery of novel inhibitors.
Methods: In this study, the mechanism of action for selected DNA gyrase inhibitors available was carried out through molecular docking and molecular dynamics (MD) simulation. In addition, pharmacophore analysis, density functional theory (DFT) calculations, and computational pharmacokinetics analysis of the gyrase inhibitors were performed.
Results: This study demonstrated that all the DNA gyrase inhibitors investigated, except compound 14, exhibit their activity by inhibiting gyrase B at a binding pocket. The interaction of the inhibitors at Lys103 was found to be essential for the binding. The molecular docking and MD simulation results revealed that compound 14 could act by inhibiting gyrase A. A pharmacophore model that consisted of the features that would help the inhibition effect was generated. The DFT analysis demonstrated 14 had relatively high chemical stability. Computational pharmacokinetics analysis revealed that most of the explored inhibitors were estimated to have good drug-like properties. Furthermore, most of the inhibitors were found to be non-mutagenic.
Conclusion: In this study, mode of action elucidation through molecular docking and MD simulation, pharmacophore model generation, pharmacokinetic property prediction, and DFT study for selected DNA gyrase inhibitors were carried out. The outcomes of this study are anticipated to contribute to the design of novel gyrase inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1573409919666230419094700 | DOI Listing |
ACS Infect Dis
January 2025
Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
Tuberculosis (TB) continues to be a major cause of death worldwide despite having an effective combinatorial therapeutic regimen and vaccine. Being one of the most successful human pathogens, retains the ability to adapt to diverse intracellular and extracellular environments encountered by it during infection, persistence, and transmission. Designing and developing new therapeutic strategies to counter the emergence of multidrug-resistant and extensively drug-resistant TB remains a major task.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, UK.
DNA gyrase is a bacterial type IIA topoisomerase that can create temporary double-stranded DNA breaks to regulate DNA topology and an archetypical target of antibiotics. The widely used quinolone class of drugs use a water-metal ion bridge in interacting with the GyrA subunit of DNA gyrase. Zoliflodacin sits in the same pocket as quinolones but interacts with the GyrB subunit and also stabilizes lethal double-stranded DNA breaks.
View Article and Find Full Text PDFACS Infect Dis
January 2025
Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States.
Developing new classes of drugs that are active against infections caused by is a priority for treating and managing this deadly disease. Here, we describe screening a small library of 20 DNA gyrase inhibitors and identifying new lead compounds. Three structurally diverse analogues were identified with minimal inhibitory concentrations of 0.
View Article and Find Full Text PDFACS Med Chem Lett
December 2024
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
In this Letter, we present a small series of novel bacterial topoisomerase inhibitors (NTBIs) that exhibit both potent inhibition of DNA gyrase and potent antimycobacterial activity. The disclosed crystal structure of DNA gyrase in complex with DNA and compound from this NBTI series reveals the binding mode of an NBTI in the GyrA binding pocket and confirms the presence and importance of halogen bonding for the excellent on-target potency. In addition, we have shown that compound is a promising DNA gyrase inhibitor, with an IC for gyrase of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!