The most aggressive subtype of medulloblastoma (MB), Group 3, is characterized by MYC amplifications. However, targeting MYC has proven unsuccessful, and there remains a lack of therapeutic targets for treating MB. Studies have shown that the B7 homolog 3 (B7‑H3) promotes cell proliferation and tumor cell invasion in a variety of cancers. Similarly, it was recently revealed that B7‑H3 promotes angiogenesis in Group 3 MB and likely facilitates MB metastasis through exosome biogenesis. While therapies targeting B7‑H3 remain in the early stages of development, targeting upstream regulators of B7‑H3 expression may be more effective for halting MB progression. Notably, MYC and the enhancer of zeste homolog 2 (EZH2) are known to regulate B7‑H3 expression, and a previous study by the authors suggested that B7‑H3 amplifications present in MB are likely the result of EZH2‑MYC mediated activities. In the present study, it was reported that overexpression of EZH2 is associated with lower overall survival in Group 3 MB patients. It was also revealed that inhibition of EZH2 significantly reduces B7‑H3 and MYC transcript levels and upregulates miR‑29a, indicating that EZH2 post‑transcriptionally regulates B7‑H3 expression in Group 3 MB cells. Pharmacological inhibition of EZH2 using EPZ005687 attenuated MB cell viability and reduced the expression of B7‑H3. Similarly, pharmacological inhibition and knockdown of EZH2 led to the downregulation of MYC, B7‑H3, and H3K27me3. Further, EZH2 silencing induced apoptosis and reduced colony‑forming ability in MB cells, whereas EZH2 inhibition in MYC‑amplified C17.2 neural stem cells induced G2/M phase arrest while downregulating B7‑H3 expression. Collectively, the current study positions EZH2 as a viable target for the future development of MB treatments and that targeting EZH2 in combination with B7‑H3 immunotherapy may be an effective treatment for halting MB progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/or.2023.8556 | DOI Listing |
Planta
January 2025
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
AtbZIP69 overexpression in wheat significantly enhanced drought and low nitrogen tolerance by modulating ABA synthesis, antioxidant activity, nitrogen allocation, and transporter gene expression, boosting yield. In this study, we generated wheat plants with improved low nitrogen (LN) and drought tolerance by introducing AtbZIP69, a gene encoding a basic leucine zipper domain transcription factor, into the wheat cultivar Shi 4056. AtbZIP69 localized to the nucleus and activated transcription.
View Article and Find Full Text PDFGastric Cancer
January 2025
Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain.
Introduction: Gastric cancer (GC) burden is currently evolving with regional differences associated with complex behavioural, environmental, and genetic risk factors. The LEGACy study is a Horizon 2020-funded multi-institutional research project conducted prospectively to provide comprehensive data on the tumour biological characteristics of gastroesophageal cancer from European and LATAM countries.
Material And Methods: Treatment-naïve advanced gastroesophageal adenocarcinoma patients were prospectively recruited in seven European and LATAM countries.
Discov Oncol
January 2025
Department of General Surgery, The Second Affiliated Hospital of the Air Force Medical University, Xi'an, 710038, China.
A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.
View Article and Find Full Text PDFMol Microbiol
January 2025
Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil.
Leishmania presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post-transcriptional level and may involve epitranscriptomic modifications of RNAs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Obstetrics and Gynecology, Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
The developmental competence and epigenetic progression of oocytes gradually become dysregulated with increasing maternal age. However, the mechanisms underlying age-related epigenetic regulation in oocytes remain poorly understood. Zygote arrest proteins 1 and 2 (ZAR1/2) are two maternal factors with partially redundant roles in maintaining oocyte quality, mainly known by regulating mRNA stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!