Intratumoral microbial heterogeneity affected tumor immune microenvironment and determined clinical outcome of HBV-related HCC.

Hepatology

Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China.

Published: October 2023

Background And Aims: The intratumoral microbiome has been reported to regulate the development and progression of cancers. We aimed to characterize intratumoral microbial heterogeneity (IMH) and establish microbiome-based molecular subtyping of HBV-related HCC to elucidate the correlation between IMH and HCC tumorigenesis.

Approach And Results: A case-control study was designed to investigate microbial landscape and characteristic microbial signatures of HBV-related HCC tissues adopting metagenomics next-generation sequencing. Microbiome-based molecular subtyping of HCC tissues was established by nonmetric multidimensional scaling. The tumor immune microenvironment of 2 molecular subtypes was characterized by EPIC and CIBERSORT based on RNA-seq and verified by immunohistochemistry. The gene set variation analysis was adopted to explore the crosstalk between the immune and metabolism microenvironment. A prognosis-related gene risk signature between 2 subtypes was constructed by the weighted gene coexpression network analysis and the Cox regression analysis and then verified by the Kaplan-Meier survival curve.IMH demonstrated in HBV-related HCC tissues was comparably lower than that in chronic hepatitis tissues. Two microbiome-based HCC molecular subtypes, defined as bacteria- and virus-dominant subtypes, were established and significantly correlated with discrepant clinical-pathologic features. Higher infiltration of M2 macrophage was detected in the bacteria-dominant subtype with to the virus-dominant subtype, accompanied by multiple upregulated metabolism pathways. Furthermore, a 3-gene risk signature containing CSAG4 , PIP4P2 , and TOMM5 was filtered out, which could predict the clinical prognosis of HCC patients accurately using the Cancer Genome Atlas data.

Conclusions: Microbiome-based molecular subtyping demonstrated IMH of HBV-related HCC was correlated with a disparity in clinical-pathologic features and tumor microenvironment (TME), which might be proposed as a biomarker for prognosis prediction of HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521776PMC
http://dx.doi.org/10.1097/HEP.0000000000000427DOI Listing

Publication Analysis

Top Keywords

hbv-related hcc
20
microbiome-based molecular
12
molecular subtyping
12
hcc tissues
12
hcc
10
intratumoral microbial
8
microbial heterogeneity
8
tumor immune
8
immune microenvironment
8
molecular subtypes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!